The Offset Normal Shape Distribution for Dynamic Shape Analysis

Abstract This article deals with the statistical analysis of landmark data observed at different temporal instants. Statistical analysis of dynamic shapes is a problem with significant challenges due to the difficulty in providing a description of the shape changes over time, across subjects and over groups of subjects. There are several modeling strategies, which can be used for dynamic shape analysis. Here, we use the exact distribution theory for the shape of planar correlated Gaussian configurations and derive the induced offset-normal shape distribution. Various properties of this distribution are investigated, and some special cases discussed. This work is a natural progression of what has been proposed in Mardia and Dryden, Dryden and Mardia, Mardia and Walder, and Kume and Welling. Supplemental materials for this article are available online.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  F. Bookstein,et al.  The inappropriateness of conventional cephalometrics. , 1979, American journal of orthodontics.

[3]  J. Magnus The Exact Moments of a Ratio of Quadratic Forms in Normal Variables , 1986 .

[4]  F. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions , 1986 .

[5]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[6]  K. Mardia,et al.  The statistical analysis of shape data , 1989 .

[7]  The Mardia–Dryden shape distribution for triangles: a stochastic calculus approach , 1991 .

[8]  K. Mardia,et al.  General shape distributions in a plane , 1991, Advances in Applied Probability.

[9]  S. Lele,et al.  Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. , 1991, American journal of physical anthropology.

[10]  A. M. Mathai,et al.  Quadratic forms in random variables : theory and applications , 1992 .

[11]  James L. Massey,et al.  Proper complex random processes with applications to information theory , 1993, IEEE Trans. Inf. Theory.

[12]  C. D. Kemp,et al.  Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory. , 1995 .

[13]  K. Mardia,et al.  Shape analysis of paired landmark data , 1994 .

[14]  K. Mardia,et al.  Consistency of Procrustes Estimators , 1997 .

[15]  H. Le,et al.  ON THE CONSISTENCY OF PROCRUSTEAN MEAN SHAPES , 1998 .

[16]  Kanti V. Mardia,et al.  The Statistical Analysis of Shape , 1998 .

[17]  Huiling Le,et al.  Multidimensional scaling of simplex shapes , 1999, Pattern Recognit..

[18]  H Le,et al.  Detection of shape changes in biological features * , 2000, Journal of microscopy.

[19]  J. McNamara,et al.  Thin-plate spline analysis of mandibular growth. , 2009, The Angle orthodontist.

[20]  K. Mardia,et al.  The complex Bingham quartic distribution and shape analysis , 2006 .

[21]  I. Dryden,et al.  Shape-space smoothing splines for planar landmark data , 2007 .

[22]  M. Genton Separable approximations of space‐time covariance matrices , 2007 .

[23]  Raymond Kan From moments of sum to moments of product , 2008 .

[24]  Carlos D. Castillo,et al.  Facial Action Coding , 2009, Encyclopedia of Biometrics.

[25]  K. Mardia,et al.  Functional models of growth for landmark data , 2010 .

[26]  M. Welling,et al.  Maximum Likelihood Estimation for the Offset-Normal Shape Distributions Using EM , 2010 .

[27]  Y. Duan,et al.  Detecting corpus callosum abnormalities in autism based on anatomical landmarks , 2010, Psychiatry Research: Neuroimaging.

[28]  I. Dryden,et al.  Shape curves and geodesic modelling , 2010 .

[29]  Dirk Heylen,et al.  Social Signal Processing: The Research Agenda , 2011, Visual Analysis of Humans.

[30]  I. Dryden,et al.  Shape inference based on multivariate normal matrix distribution , 2013 .

[31]  Fred L. Bookstein,et al.  Measuring and Reasoning: Numerical Inference in the Sciences , 2014 .

[32]  L. Salmaso,et al.  Nonparametric combination-based tests in dynamic shape analysis , 2015 .

[33]  Hongtu Zhu,et al.  Clustering High-Dimensional Landmark-Based Two-Dimensional Shape Data , 2015, Journal of the American Statistical Association.

[34]  Ritesh Boda,et al.  FACE DETECTION AND TRACKING USING KLT AND VIOLA JONES , 2016 .

[35]  R. Oyonarte,et al.  Evolution of ANB and SN-GoGn angles during craniofacial growth: A retrospective longitudinal study , 2016 .

[36]  L. Salmaso,et al.  Parametric and Nonparametric Inference for Statistical Dynamic Shape Analysis with Applications , 2016 .

[37]  Proper complex random processes , 2017 .

[38]  T. Al-Jewair,et al.  American Association of Orthodontists Foundation Craniofacial Growth Legacy Collection in the orthodontic literature—use and trends: A systematic review , 2018, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[39]  Heng Yang,et al.  Facial feature point detection: A comprehensive survey , 2014, Neurocomputing.