Improved performance and life time of inverted organic photovoltaics by using polymer interfacial materials
暂无分享,去创建一个
Mats Andersson | Eszter Voroshazi | Ergang Wang | Patrik Henriksson | Ergang Wang | M. Andersson | A. Hadipour | R. Kroon | Patrik Henriksson | E. Voroshazi | Zandra George | Camilla Lindqvist | Afshin Hadipour | Wenliu Zhuang | Renee Kroon | Zandra George | Camilla Lindqvist | Wenliu Zhuang
[1] C. Brabec,et al. 2.5% efficient organic plastic solar cells , 2001 .
[2] F. Krebs,et al. Stability/degradation of polymer solar cells , 2008 .
[3] Yong Cao,et al. High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO , 2012 .
[4] M. Burgelman,et al. Effect of light induced degradation on electrical transport and charge extraction in polythiophene:Fullerene (P3HT:PCBM) solar cells , 2014 .
[5] Allen J. Bard,et al. Electrochemical Methods: Fundamentals and Applications , 1980 .
[6] Yang Yang,et al. Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .
[7] Mario Leclerc,et al. A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .
[8] Miao Xu,et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.
[9] Olle Inganäs,et al. Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode , 2007 .
[10] U. Würfel,et al. Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells , 2011 .
[11] A. Heeger,et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.
[12] Ole Hagemann,et al. Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb , 2011 .
[13] Suren A. Gevorgyan,et al. Stability of Polymer Solar Cells , 2012, Advanced materials.
[14] Stephen R. Forrest,et al. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.
[15] Yang Yang,et al. Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .
[16] F. Gao,et al. Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials , 2014 .
[17] Sean E. Shaheen,et al. Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer , 2006 .
[18] Ye Tao,et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2',3'-d]silole copolymer with a power conversion efficiency of 7.3%. , 2011, Journal of the American Chemical Society.
[19] T. Riedl,et al. Ultrathin interlayers of a conjugated polyelectrolyte for low work-function cathodes in efficient inverted organic solar cells , 2013 .
[20] O. Inganäs,et al. Semi‐Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency , 2012 .
[21] F. Huang,et al. Highly Efficient Inverted Polymer Solar Cells Based on an Alcohol Soluble Fullerene Derivative Interfacial Modification Material , 2012 .
[22] Talha M. Khan,et al. A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.
[23] Z. Yin,et al. Solution-processed nanocrystalline TiO2 buffer layer used for improving the performance of organic photovoltaics. , 2011, ACS applied materials & interfaces.
[24] Khai Leok Chan,et al. Poly(2,7-dibenzosilole): a blue light emitting polymer. , 2005, Journal of the American Chemical Society.
[25] A. Facchetti,et al. Dithienosilole- and dibenzosilole-thiophene copolymers as semiconductors for organic thin-film transistors. , 2006, Journal of the American Chemical Society.
[26] L. Lan,et al. High Efficiency and High Voc Inverted Polymer Solar Cells Based on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer on ITO Cathode , 2012 .
[27] J. Park,et al. Enhanced Performance in Polymer Solar Cells by Surface Energy Control , 2010 .
[28] Yong Cao,et al. Enhanced open-circuit voltage in polymer solar cells , 2009 .
[29] A. W. Addison,et al. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C , 2000 .
[30] R. Muller,et al. Room temperature solution-processed electron transport layer for organic solar cells , 2013 .
[31] Jean-Michel Nunzi,et al. Development of air stable polymer solar cells using an inverted gold on top anode structure , 2005 .
[32] Mario Leclerc,et al. New Well-Defined Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping , 1997 .
[33] Guo-Qiang Lo,et al. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer , 2008 .
[34] Shijun Jia,et al. Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.
[35] Olle Inganäs,et al. Interlayer for Modified Cathode in Highly Efficient Inverted ITO‐Free Organic Solar Cells , 2012, Advanced materials.
[36] Suren A. Gevorgyan,et al. Consensus stability testing protocols for organic photovoltaic materials and devices , 2011 .
[37] Fei Huang,et al. Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes , 2010 .
[38] Chunxiang Zhu,et al. Enhanced inverted organic solar cell performance by post-treatments of solution-processed ZnO buffer layers , 2014 .
[39] Jin Jang,et al. Inverted organic solar cells with TiOx cathode and graphene oxide anode buffer layers , 2013 .
[40] Andrés J. García,et al. Chemically Controlled Reversible and Irreversible Extraction Barriers Via Stable Interface Modification of Zinc Oxide Electron Collection Layer in Polycarbazole‐based Organic Solar Cells , 2014 .
[41] Gang Li,et al. For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.
[42] Yang Yang,et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.
[43] Frederik C. Krebs,et al. A brief history of the development of organic and polymeric photovoltaics , 2004 .