Agent-Based Solutions for Natural Language Generation Tasks

When building natural language generation applications it is desireable to have the possibility of assembling modules that use different techniques for each one of the specific generation tasks. This paper presents an agent-based module for referring expression generation and aggregation, implemented within the framework of a generic architecture for implementing multi-agent systems: Open Agent Architecture.

[1]  Richard Power,et al.  An integrated framework for text planning and pronominalisation , 2000, INLG.

[2]  Robert Dale,et al.  A Fast Algorithm for the Generation of Referring Expressions , 1992, COLING.

[3]  Ehud Reiter,et al.  Book Reviews: Building Natural Language Generation Systems , 2000, CL.

[4]  Pablo Gervás Gómez-Navarro,et al.  Uso flexible de soluciones evolutivas para tareas de Generación de Lenguaje Natural. , 2005 .

[5]  Robert Dale,et al.  Building Natural Language Generation Systems: Figures , 2000 .

[6]  Ehud Reiter,et al.  Has a Consensus NL Generation Architecture Appeared, and is it Psycholinguistically Plausible? , 1994, INLG.

[7]  James C. Lester,et al.  Narrative prose generation , 2001, Artif. Intell..

[8]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[9]  Rafael Muñoz,et al.  An Algorithm for Anaphora Resolution in Spanish Texts , 2001, CL.

[10]  Douglas B. Moran,et al.  The Open Agent Architecture: A Framework for Building Distributed Software Systems , 1999, Appl. Artif. Intell..

[11]  Raquel Hervás,et al.  Una arquitectura software para el desarrollo de aplicaciones de generación de lenguaje natural , 2004, Proces. del Leng. Natural.

[12]  Raquel Hervás,et al.  Story Plot Generation based on CBR , 2004, SGAI Conf..

[13]  Richard I. Kittredge,et al.  Using natural-language processing to produce weather forecasts , 1994, IEEE Expert.

[14]  Michael Zock,et al.  Architectures for Natural Language Generation: Problems and Perspectives , 1993, EWNLG.