A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search
暂无分享,去创建一个
[1] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[2] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[3] P. Wolfe. Convergence Conditions for Ascent Methods. II , 1969 .
[4] Boris Polyak. The conjugate gradient method in extremal problems , 1969 .
[5] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[6] P. Wolfe. Convergence Conditions for Ascent Methods. II: Some Corrections , 1971 .
[7] Shmuel S. Oren,et al. Self-scaling variable metric algorithms for unconstrained minimization , 1972 .
[8] D. Luenberger,et al. Self-Scaling Variable Metric (SSVM) Algorithms , 1974 .
[9] S. Oren. SELF-SCALING VARIABLE METRIC (SSVM) ALGORITHMS Part II: Implementation and Experiments*t , 1974 .
[10] Shmuel S. Oren,et al. Optimal conditioning of self-scaling variable Metric algorithms , 1976, Math. Program..
[11] M. J. D. Powell,et al. Restart procedures for the conjugate gradient method , 1977, Math. Program..
[12] A. Perry. A Class of Conjugate Gradient Algorithms with a Two-Step Variable Metric Memory , 1977 .
[13] D. Shanno. On the Convergence of a New Conjugate Gradient Algorithm , 1978 .
[14] D. F. Shanno,et al. Matrix conditioning and nonlinear optimization , 1978, Math. Program..
[15] T. M. Williams,et al. Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .
[16] David F. Shanno,et al. Remark on “Algorithm 500: Minimization of Unconstrained Multivariate Functions [E4]” , 1980, TOMS.
[17] Jorge J. Moré,et al. Testing Unconstrained Optimization Software , 1981, TOMS.
[18] M. Powell. Nonconvex minimization calculations and the conjugate gradient method , 1984 .
[19] M. Powell. Convergence properties of algorithms for nonlinear optimization , 1986 .
[20] R. Fletcher. Practical Methods of Optimization , 1988 .
[21] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[22] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[23] M. Al-Baali. Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms , 1998 .
[24] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[25] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[26] Ya-Xiang Yuan,et al. Convergence Properties of Nonlinear Conjugate Gradient Methods , 1999, SIAM J. Optim..
[27] Y. -H. Dai,et al. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .
[28] Ya-Xiang Yuan,et al. An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization , 2001, Ann. Oper. Res..
[29] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[30] Yu-Hong Dai. A family of hybrid conjugate gradient methods for unconstrained optimization , 2003, Math. Comput..
[31] Nicholas I. M. Gould,et al. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.
[32] Hongchao Zhang,et al. Adaptive Two-Point Stepsize Gradient Algorithm , 2001, Numerical Algorithms.
[33] Hiroshi Yabe,et al. Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition , 2004, Comput. Optim. Appl..
[34] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[35] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .
[36] William W. Hager,et al. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.
[37] Li Zhang,et al. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.
[38] Guoyin Li,et al. New conjugacy condition and related new conjugate gradient methods for unconstrained optimization , 2007 .
[39] D. Luenberger,et al. SELF-SCALING VARIABLE METRIC ( SSVM ) ALGORITHMS Part I : Criteria and Sufficient Conditions for Scaling a Class of Algorithms * t , 2007 .
[40] Wufan Chen,et al. Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization , 2008, Optim. Methods Softw..
[41] Qunfeng Liu,et al. Sufficient descent nonlinear conjugate gradient methods with conjugacy condition , 2009, Numerical Algorithms.
[42] Yuhong Dai. Nonlinear Conjugate Gradient Methods , 2011 .
[43] Boris Polyak. The conjugate gradient method in extreme problems , 2015 .
[44] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .