A hybrid fuzzy evolutionary algorithm for a multi-objective resource allocation problem

In this paper a hybrid fuzzy evolutionary algorithm for a multi-objective resource allocation problem, the student project allocation (SPA) problem, is presented. Student project allocation must satisfy a number of soft objectives stemming from multiple points of view. The proposed algorithm employs a fuzzy inference system to model and aggregate the objectives, assuming the role of the fitness function in the evolutionary algorithm. The fuzzy system captures preferences of the decision maker in the compromise between various objectives, thereby guiding the search to interesting regions in the objective space. The results demonstrate the effectiveness of this hybrid approach for a large data set.

[1]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[2]  Pierre Borne,et al.  Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic , 2002, Math. Comput. Simul..

[3]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[4]  Yong Liu,et al.  An Efficient Multi-objective Evolutionary Algorithm: OMOEA-II , 2005, EMO.

[5]  T. Van Le A fuzzy evolutionary approach to constrained optimisation problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[6]  Sadiq M. Sait,et al.  A FUZZY EVOLUTIONARY ALGORITHM FOR TOPOLOGY DESIGN OF CAMPUS NETWORKS , 2004 .

[7]  Po-Lung Yu,et al.  Forming Winning Strategies: An Integrated Theory of Habitual Domains , 1990 .

[8]  Tomoyuki Hiroyasu,et al.  SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 , 2004, PPSN.

[9]  Carlos A. Coello Coello,et al.  A new multi-objective evolutionary algorithm: neighbourhood exploring evolution strategy , 2005 .

[10]  Sancho Salcedo-Sanz,et al.  A two-phase heuristic evolutionary algorithm for personalizing course timetables: a case study in a Spanish university , 2005, Comput. Oper. Res..

[11]  D. J. Ho,et al.  A systematic approach to the implementation of final year project in an electrical engineering undergraduate course , 1998 .

[12]  T. Glenn Bailey,et al.  A dynamic neighborhood based tabu search algorithm for real-world flight instructor scheduling problems , 2006, Eur. J. Oper. Res..

[13]  M. A. Abido,et al.  Optimal VAR dispatch using a multiobjective evolutionary algorithm , 2005 .

[14]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[15]  Mahmoud A. Abo-Sinna,et al.  An effective genetic algorithm approach to multiobjective resource allocation problems (MORAPs) , 2005, Appl. Math. Comput..

[16]  J. Branke,et al.  Guidance in evolutionary multi-objective optimization , 2001 .

[17]  Sanyou Zeng,et al.  An Orthogonal Multi-objective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints , 2004, Evolutionary Computation.

[18]  Ravi Shankar,et al.  A neuro-tabu search heuristic for the flow shop scheduling problem , 2004, Comput. Oper. Res..

[19]  Po-Lung Yu,et al.  Marginal analysis for competence set expansion , 1993 .

[20]  Hossain Poorzahedy,et al.  Hybrid meta-heuristic algorithms for solving network design problem , 2007, Eur. J. Oper. Res..

[21]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[22]  Chi-Ming Lin,et al.  Multicriteria-multistage planning for the optimal path selection using hybrid genetic algorithms , 2006, Appl. Math. Comput..

[23]  Kay Chen Tan,et al.  A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems , 2006, Eur. J. Oper. Res..

[24]  Lorne Olfman,et al.  ERP training strategies: conceptual training and the formation of accurate mental models , 2003, SIGMIS CPR '03.

[25]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[26]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[27]  W. Boulton,et al.  ERP implementation failures in China: Case studies with implications for ERP vendors , 2005 .

[28]  Arif A. Anwar,et al.  Student project allocation using integer programming , 2003, IEEE Trans. Educ..

[29]  Dazhi Zhang,et al.  Optimal Expansion Of Competence Sets And Decision Support , 1992 .

[30]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[31]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Ting-Yu Chen,et al.  Expanding competence sets for the consumer decision problem , 2002, Eur. J. Oper. Res..

[33]  Takeshi Furuhashi,et al.  A proposal of combined method of evolutionary algorithm and heuristics for nurse scheduling support system , 2003, IEEE Trans. Ind. Electron..

[34]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[35]  Habib Youssef,et al.  Fuzzy Evolutionary Hybrid Metaheuristic for Network Topology Design , 2001, EMO.

[36]  Ben Light,et al.  Going beyond 'misfit' as a reason for ERP package customisation , 2005, Comput. Ind..