Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells
暂无分享,去创建一个
Jian V. Li | Tonio Buonassisi | Sang Woon Lee | Jonathan P. Mailoa | Roy G. Gordon | Riley E. Brandt | Yun Seog Lee | R. Gordon | T. Buonassisi | Sang Woon Lee | R. Brandt | S. Siah | Jian V. Li | Y. Lee | D. Chua | Danny Chua | Sin Cheng Siah | J. Mailoa | Danny Chua
[1] P. Scardi,et al. Absorption coefficient of bulk and thin film Cu2O , 2011 .
[2] M. Grätzel,et al. The Role of Insulating Oxides in Blocking the Charge Carrier Recombination in Dye‐Sensitized Solar Cells , 2014 .
[3] J. Robertson,et al. Limits to doping in oxides , 2011 .
[4] H. Hesse,et al. Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.
[5] Yuki Nishi,et al. High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .
[6] Fred Roozeboom,et al. High‐Speed Spatial Atomic‐Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation , 2010, Advanced materials.
[7] R. Gordon,et al. Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells , 2013 .
[8] Tonio Buonassisi,et al. Improved Cu2O‐Based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p‐n Junction , 2014 .
[9] Yuki Nishi,et al. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells , 2013 .
[10] M. Eickhoff,et al. Binary copper oxide semiconductors: From materials towards devices , 2012 .
[11] David O. Scanlon,et al. Undoped n-Type Cu2O: Fact or Fiction? , 2010 .
[12] U. Rau,et al. Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells , 2002 .
[13] L. Tjeng,et al. Electronic structure of Cu2O and CuO. , 1988, Physical review. B, Condensed matter.
[14] Hideo Hosono,et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .
[15] M. Wolf,et al. SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .
[16] Kevin P. Musselman,et al. A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO‐Cu2O Photovoltaics , 2011 .
[17] A. van de Walle , 2008 .
[18] Mohammad Khaja Nazeeruddin,et al. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells. , 2012, Nano letters.
[19] T. Buonassisi,et al. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering , 2011 .
[20] Martin A. Green,et al. Review of conductor-insulator-semiconductor (CIS) solar cells , 1981 .
[21] D. C. Law,et al. Band gap‐voltage offset and energy production in next‐generation multijunction solar cells , 2011 .
[22] A Paul Alivisatos,et al. Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.
[23] J. Waldrop,et al. Measurement of AlN/GaN (0001) heterojunction band offsets by x‐ray photoemission spectroscopy , 1996 .
[24] A. Pasquier,et al. Effects of Mg composition on open circuit voltage of Cu2O-MgxZn1 xO heterojunction solar cells , 2012 .
[25] Joel B. Varley,et al. Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .
[26] Kai Arstila,et al. Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor , 2006 .
[27] John R. Tumbleston,et al. Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells , 2011 .
[28] R. Tscharner,et al. Photovoltaic technology: the case for thin-film solar cells , 1999, Science.
[29] S. Bent,et al. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. , 2011, Nanoscale.
[30] K. Musselman,et al. Modelling charge transport lengths in heterojunction solar cells , 2012 .
[31] N. Lewis,et al. 820 mV open-circuit voltages from Cu2O/CH3CN junctions , 2011 .
[32] J. Kwo,et al. Attainment of low interfacial trap density absent of a large midgap peak in In0.2Ga0.8As by Ga2O3(Gd2O3) passivation , 2011 .
[33] Zach M. Beiley,et al. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .
[34] Jeffrey W. Elam,et al. Atomic Layer Deposition of Ga2O3 Films Using Trimethylgallium and Ozone , 2012 .
[35] Francesca Sarto,et al. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate , 2006 .
[36] Jonathan P. Mailoa,et al. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells , 2013 .
[37] L. C. Olsen,et al. Experimental and theoretical studies of Cu2O solar cells , 1982 .
[38] Ronald A. Sinton,et al. Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements , 2002 .
[39] Arie Zaban,et al. All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.
[40] R. Scheer. Activation energy of heterojunction diode currents in the limit of interface recombination , 2009 .
[41] Hideo Hosono,et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals , 1997 .