Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells

The power conversion efficiency of solar cells based on copper (I) oxide (Cu2 O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2 O3 ) layer. By improving band-alignment and passivating interface defects, the device exhibits an open-circuit voltage of 1.20 V and an efficiency of 3.97%, showing potential of over 7% efficiency.

[1]  P. Scardi,et al.  Absorption coefficient of bulk and thin film Cu2O , 2011 .

[2]  M. Grätzel,et al.  The Role of Insulating Oxides in Blocking the Charge Carrier Recombination in Dye‐Sensitized Solar Cells , 2014 .

[3]  J. Robertson,et al.  Limits to doping in oxides , 2011 .

[4]  H. Hesse,et al.  Strong Efficiency Improvements in Ultra‐low‐Cost Inorganic Nanowire Solar Cells , 2010, Advanced materials.

[5]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .

[6]  Fred Roozeboom,et al.  High‐Speed Spatial Atomic‐Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation , 2010, Advanced materials.

[7]  R. Gordon,et al.  Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells , 2013 .

[8]  Tonio Buonassisi,et al.  Improved Cu2O‐Based Solar Cells Using Atomic Layer Deposition to Control the Cu Oxidation State at the p‐n Junction , 2014 .

[9]  Yuki Nishi,et al.  Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells , 2013 .

[10]  M. Eickhoff,et al.  Binary copper oxide semiconductors: From materials towards devices , 2012 .

[11]  David O. Scanlon,et al.  Undoped n-Type Cu2O: Fact or Fiction? , 2010 .

[12]  U. Rau,et al.  Interdependence of absorber composition and recombination mechanism in Cu(In,Ga)(Se,S)2 heterojunction solar cells , 2002 .

[13]  L. Tjeng,et al.  Electronic structure of Cu2O and CuO. , 1988, Physical review. B, Condensed matter.

[14]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[15]  M. Wolf,et al.  SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .

[16]  Kevin P. Musselman,et al.  A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO‐Cu2O Photovoltaics , 2011 .

[17]  A. van de Walle , 2008 .

[18]  Mohammad Khaja Nazeeruddin,et al.  Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells. , 2012, Nano letters.

[19]  T. Buonassisi,et al.  Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering , 2011 .

[20]  Martin A. Green,et al.  Review of conductor-insulator-semiconductor (CIS) solar cells , 1981 .

[21]  D. C. Law,et al.  Band gap‐voltage offset and energy production in next‐generation multijunction solar cells , 2011 .

[22]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[23]  J. Waldrop,et al.  Measurement of AlN/GaN (0001) heterojunction band offsets by x‐ray photoemission spectroscopy , 1996 .

[24]  A. Pasquier,et al.  Effects of Mg composition on open circuit voltage of Cu2O-MgxZn1 xO heterojunction solar cells , 2012 .

[25]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[26]  Kai Arstila,et al.  Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor , 2006 .

[27]  John R. Tumbleston,et al.  Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells , 2011 .

[28]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[29]  S. Bent,et al.  Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. , 2011, Nanoscale.

[30]  K. Musselman,et al.  Modelling charge transport lengths in heterojunction solar cells , 2012 .

[31]  N. Lewis,et al.  820 mV open-circuit voltages from Cu2O/CH3CN junctions , 2011 .

[32]  J. Kwo,et al.  Attainment of low interfacial trap density absent of a large midgap peak in In0.2Ga0.8As by Ga2O3(Gd2O3) passivation , 2011 .

[33]  Zach M. Beiley,et al.  Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .

[34]  Jeffrey W. Elam,et al.  Atomic Layer Deposition of Ga2O3 Films Using Trimethylgallium and Ozone , 2012 .

[35]  Francesca Sarto,et al.  Heterojunction solar cell with 2% efficiency based on a Cu2O substrate , 2006 .

[36]  Jonathan P. Mailoa,et al.  Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells , 2013 .

[37]  L. C. Olsen,et al.  Experimental and theoretical studies of Cu2O solar cells , 1982 .

[38]  Ronald A. Sinton,et al.  Generalized analysis of quasi-steady-state and transient decay open circuit voltage measurements , 2002 .

[39]  Arie Zaban,et al.  All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.

[40]  R. Scheer Activation energy of heterojunction diode currents in the limit of interface recombination , 2009 .

[41]  Hideo Hosono,et al.  Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals , 1997 .