A SPSA Algorithm for Solving Fuzzy Random Expected Value Models

In this paper, fuzzy random expected value models are considered. In order to solve the models, a simultaneous perturbation stochastic approximation (SPSA) algorithm based on fuzzy random simulation is proposed, in which fuzzy random simulation technique is designed to estimate the expected values of functions with fuzzy random variables, and SPSA is used to search for the optimal solution. At the end of this paper, an example illustrates the feasibility and effectiveness of the provided algorithm

[1]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[2]  M. K. Luhandjula Fuzziness and randomness in an optimization framework , 1996, Fuzzy Sets Syst..

[3]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[4]  J. Spall,et al.  Stochastic optimization with inequality constraints using simultaneous perturbations and penalty functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[5]  J. Spall Adaptive stochastic approximation by the simultaneous perturbation method , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[6]  Baoding Liu,et al.  Fuzzy random dependent-chance programming , 2001, IEEE Trans. Fuzzy Syst..

[7]  Payman Sadegh,et al.  Constrained optimization via stochastic approximation with a simultaneous perturbation gradient approximation , 1997, Autom..

[8]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[9]  Baoding Liu,et al.  Fuzzy random chance-constrained programming , 2001, IEEE Trans. Fuzzy Syst..

[10]  J. L. Maryak,et al.  Global random optimization by simultaneous perturbation stochastic approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[11]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[12]  D. C. Chin,et al.  A more efficient global optimization algorithm based on Styblinski and Tang , 1994, Neural Networks.

[13]  Baoding Liu,et al.  Toward Fuzzy Optimization without Mathematical Ambiguity , 2002, Fuzzy Optim. Decis. Mak..

[14]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[15]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[16]  Yian-Kui Liu,et al.  A class of fuzzy random optimization: expected value models , 2003, Inf. Sci..

[17]  J. Spall A Stochastic Approximation Technique for Generating Maximum Likelihood Parameter Estimates , 1987, 1987 American Control Conference.

[18]  James C. Spall,et al.  A one-measurement form of simultaneous perturbation stochastic approximation , 1997, Autom..

[19]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[20]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[21]  Efficient global optimization using SPSA , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[22]  J. Spall,et al.  Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[23]  J. Spall Accelerated second-order stochastic optimization using only function measurements , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[24]  Yian-Kui Liu,et al.  Fuzzy Random Variables: A Scalar Expected Value Operator , 2003, Fuzzy Optim. Decis. Mak..

[25]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[26]  Baoding Liu,et al.  Inequalities and Convergence Concepts of Fuzzy and Rough Variables , 2003, Fuzzy Optim. Decis. Mak..

[27]  坂和 正敏 Fuzzy sets and interactive multiobjective optimization , 1993 .

[28]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[29]  A. V. Yazenin,et al.  Fuzzy and stochastic programming , 1987 .

[30]  Volker Krätschmer,et al.  A unified approach to fuzzy random variables , 2001, Fuzzy Sets Syst..