Discovering forest height changes based on spaceborne lidar data of ICESat-1 in 2005 and ICESat-2 in 2019: a case study in the Beijing-Tianjin-Hebei region of China

[1]  Meng Liu,et al.  Feasibility of Burned Area Mapping Based on ICESAT-2 Photon Counting Data , 2019, Remote. Sens..

[2]  Lori A. Magruder,et al.  Canopy and Terrain Height Retrievals with ICESat-2: A First Look , 2019, Remote. Sens..

[3]  Amy L. Neuenschwander,et al.  The ATL08 land and vegetation product for the ICESat-2 Mission , 2019, Remote Sensing of Environment.

[4]  V. Brovkin,et al.  China and India lead in greening of the world through land-use management , 2019, Nature Sustainability.

[5]  Amy L. Neuenschwander,et al.  Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data , 2018 .

[6]  David J. Harding,et al.  The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation , 2017 .

[7]  Lori A. Magruder,et al.  The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems , 2016, Remote. Sens..

[8]  Ronggao Liu,et al.  A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height , 2016 .

[9]  M. Herold,et al.  Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series , 2015 .

[10]  Nicholas C. Coops,et al.  Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada , 2013 .

[11]  Ross Nelson,et al.  How did we get here? An early history of forestry lidar1 , 2013 .

[12]  Chengquan Huang,et al.  Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error , 2013, Int. J. Digit. Earth.

[13]  J. Eitel,et al.  Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys , 2012 .

[14]  Christiane Schmullius,et al.  Influence of Surface Topography on ICESat/GLAS Forest Height Estimation and Waveform Shape , 2012, Remote. Sens..

[15]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[16]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[17]  Jiali Xie,et al.  Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data , 2011 .

[18]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[19]  G. Hurtt,et al.  Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica , 2009 .

[20]  J. Vogelmann,et al.  Monitoring forest changes in the southwestern United States using multitemporal Landsat data , 2009 .

[21]  G. Henebry,et al.  Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions , 2009 .

[22]  J. Martonchik,et al.  Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer , 2008 .

[23]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[24]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[25]  Olivier Hagolle,et al.  Quality assessment and improvement of temporally composited products of remotely sensed imagery by combination of VEGETATION 1 and 2 images , 2005 .

[26]  Cheng Wang,et al.  Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux , 2018 .

[27]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .