The X-ray Transform on a General Family of Curves on Finsler Surfaces
暂无分享,去创建一个
[1] N. S. Dairbekov,et al. Hopf type rigidity for thermostats , 2012, Ergodic Theory and Dynamical Systems.
[2] Sean F. Holman,et al. The weighted doppler transform , 2009, 0905.2375.
[3] G. Paternain,et al. On the cohomological equation of magnetic flows , 2008, 0807.4602.
[4] G. Paternain,et al. Rigidity properties of Anosov optical hypersurfaces , 2005, Ergodic Theory and Dynamical Systems.
[5] G. Paternain,et al. On the injectivity of the X-ray transform for Anosov thermostats , 2007, 0708.1017.
[6] Andrew Béla Frigyik,et al. The X-Ray Transform for a Generic Family of Curves and Weights , 2007, math/0702065.
[7] G. Uhlmann,et al. The boundary rigidity problem in the presence of a magnetic field , 2006, math/0611788.
[8] N. S. Dairbekov. Integral geometry problem for nontrapping manifolds , 2006 .
[9] G. Paternain,et al. Entropy Production in Gaussian Thermostats , 2006, math/0601039.
[10] Nurlan S. Dairbekov Gabriel P. Paternain. LONGITUDINAL KAM-COCYCLES AND ACTION SPECTRA OF MAGNETIC FLOWS , 2005, math/0501172.
[11] G. Paternain. The longitudinal KAM-cocycle of a magnetic flow , 2004, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] V. Sharafutdinov. An Integral Geometry Problem in a Nonconvex Domain , 2002 .
[13] D. Bao,et al. An Introduction to Riemann-Finsler Geometry , 2000 .
[14] M. Wojtkowski. Magnetic flows and Gaussian thermostats on manifolds of negative curvature , 2000 .
[15] Marc Chamberland,et al. A Problem from Integral Geometry , 1995, SIAM Rev..
[16] R. Llave,et al. Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation , 1985 .
[17] É. Ghys. Flots d'Anosov sur les 3-variétés fibrées en cercles , 1984, Ergodic Theory and Dynamical Systems.
[18] V. Guillemin,et al. Some inverse spectral results for negatively curved 2-manifolds , 1980 .
[19] L. W. Green. Surfaces without conjugate points , 1954 .
[20] E. Hopf. Closed Surfaces Without Conjugate Points. , 1948, Proceedings of the National Academy of Sciences of the United States of America.
[21] Hlawka. Theory of the integral , 1939 .