Sliver-free three dimensional delaunay mesh generation
暂无分享,去创建一个
[1] S. Teng,et al. Biting: advancing front meets sphere packing , 2000 .
[2] Xiang-Yang Li. Functional Delaunay Reenement , 2000 .
[3] Jim Ruppert,et al. A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.
[4] Shang-Hua Teng,et al. Unstructured Mesh Generation: Theory, Practice, and Perspectives , 2000, Int. J. Comput. Geom. Appl..
[5] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[6] Steven J. Owen. Nonsimplicial unstructured mesh generation , 1999 .
[7] S. Canann,et al. Optismoothing: an optimization-driven approach to mesh smoothing , 1993 .
[8] Gary L. Miller,et al. Optimal Coarsening of Unstructured Meshes , 1999, J. Algorithms.
[9] D. Eppstein,et al. Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[10] William H. Frey,et al. An apporach to automatic three‐dimensional finite element mesh generation , 1985 .
[11] Jonathan Richard Shewchuk,et al. Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.
[12] Charles L. Lawson,et al. Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..
[13] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[14] Matthew L. Staten,et al. An Approach to Combined Laplacian and Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes , 1998, IMR.
[15] L. Paul Chew,et al. Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.
[16] Jonathan Richard Shewchuk,et al. Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.
[17] Lori A. Freitag,et al. On combining Laplacian and optimization-based mesh smoothing techniques , 1997 .
[18] D. A. Field. Laplacian smoothing and Delaunay triangulations , 1988 .
[19] L. Paul Chew,et al. Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.
[20] R. Seidel. Backwards Analysis of Randomized Geometric Algorithms , 1993 .
[21] 二宮 市三,et al. Mathematical Software (数値解析とコンピューター) , 1975 .
[22] Scott A. Mitchell,et al. Quality mesh generation in three dimensions , 1992, SCG '92.
[23] R. K. Smith,et al. Mesh Smoothing Using A Posteriori Error Estimates , 1997 .
[24] Peter Gritzmann,et al. On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[25] I. Fried. Condition of finite element matrices generated from nonuniform meshes. , 1972 .
[26] Xiang-Yang Li,et al. Smoothing and cleaning up slivers , 2000, STOC '00.
[27] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[28] Peter McMullen,et al. Polytopes: Abstract, Convex and Computational , 1994 .
[29] Dafna Talmor,et al. Well-Spaced Points for Numerical Methods , 1997 .
[30] Carl Ollivier-Gooch,et al. Tetrahedral mesh improvement using swapping and smoothing , 1997 .
[31] P. Plassmann,et al. An Eecient Parallel Algorithm for Mesh Smoothing , 1995 .
[32] byXiang,et al. OPTIMIZATION-BASED QUADRILATERAL AND HEXHEDRAL MESHUNTANGLING AND SMOOTHING TECHNIQUES * , 1999 .
[33] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[34] Gary L. Miller,et al. Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.
[35] Geoff Leach,et al. Improving Worst-Case Optimal Delaunay Triangulation Algorithms , 1992 .
[36] Herbert Edelsbrunner,et al. On the Definition and the Construction of Pockets in Macromolecules , 1998, Discret. Appl. Math..
[37] D. Eppstein,et al. MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .
[38] S. Teng,et al. On the Radius-Edge Condition in the Control Volume Method , 1999 .
[39] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[40] Gary L. Miller,et al. A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.
[41] Jonathan Richard Shewchuk,et al. Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations , 2000, SCG '00.