A Lie theoretic categorification of the coloured Jones polynomial
暂无分享,去创建一个
[1] An invariant of link cobordisms from Khovanov homology. , 2002, math/0206303.
[2] C. Stroppel,et al. Translation and shuffling of projectively presentable modules and a categorification of a parabolic hecke module , 2004 .
[3] A diagrammatic approach to categorification of quantum groups II , 2009 .
[4] Sabin Cautis,et al. Knot homology via derived categories of coherent sheaves I, sl(2) case , 2007, math/0701194.
[5] Lev Rozansky,et al. An infinite torus braid yields a categorified Jones-Wenzl projector , 2010, 1005.3266.
[6] C. Stroppel,et al. Highest weight categories arising from Khovanov's diagram algebra III: category O , 2008, 0812.1090.
[7] Kevin Walker,et al. Fixing the functoriality of Khovanov homology , 2009 .
[8] C. Stroppel,et al. Categorification of tensor product representations of slk and category O , 2014, 1407.4267.
[9] S. Wehrli,et al. Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links , 2005, Canadian Journal of Mathematics.
[10] C. Stroppel,et al. 2-block Springer fibers: convolution algebras and coherent sheaves , 2008, 0802.1943.
[11] P. Seidel. A pr 2 00 6 A link invariant from the symplectic geometry of nilpotent slices , 2006 .
[12] W. Soergel. Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .
[13] Vladimir Turaev,et al. State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .
[14] K. Szymiczek. Tensor product of algebras , 2017 .
[15] Wolfgang Soergel,et al. The combinatorics of Harish-Chandra bimodules. , 1992 .
[16] C. Stroppel. A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings , 2004 .
[17] C. Stroppel,et al. Twisting Functors on O , 2003 .
[18] Sabin Cautis. Clasp technology to knot homology via the affine Grassmannian , 2012, 1207.2074.
[19] Twisted Verma Modules , 2001, math/0105012.
[20] S. Ryom-Hansen. Koszul Duality of Translation—and Zuckerman Functors , 2009, 0905.0407.
[21] M. Khovanov,et al. A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .
[22] S. Arkhipov. Algebraic construction of contragradient quasi-Verma modules in positive characteristic , 2001, math/0105042.
[23] C. Stroppel,et al. Completions of Grothendieck groups , 2011, 1105.2715.
[24] C. Stroppel,et al. Highest weight categories arising from Khovanov's diagram algebra II: Koszulity , 2008, 0806.3472.
[25] C. Stroppel. Category O: gradings and translation functors , 2003 .
[26] Vyacheslav Krushkal,et al. Categorification of the Jones-Wenzl Projectors , 2010, 1005.5117.
[27] C. Stroppel. Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors , 2005 .
[28] C. Stroppel,et al. A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products , 2005, math/0511467.
[29] Aaron D. Lauda,et al. A categorification of quantum sl(n) , 2008, 0807.3250.
[30] Matthew Hogancamp. A polynomial action on colored sl(2) link homology , 2014, 1405.2574.
[31] Wolfgang Soergel,et al. Koszul Duality Patterns in Representation Theory , 1996 .
[32] Alexei Oblomkov,et al. Torus knots and the rational DAHA , 2012, 1207.4523.
[33] C. Blanchet. An oriented model for Khovanov homology , 2010, 1405.7246.
[34] B. Webster,et al. Tensor product algebras, Grassmannians and Khovanov homology , 2013, 1312.7357.
[35] V. Mazorchuk,et al. On Arkhipov’s and Enright’s functors , 2005 .
[36] E. Lee. An Endomorphism of the Khovanov Invariant , 2008 .
[37] Evgeny Gorsky,et al. On Stable Khovanov Homology of Torus Knots , 2012, Exp. Math..
[38] Sabin Cautis,et al. Knot homology via derived categories of coherent sheaves II, $\mathfrak{sl}_{m}$ case , 2007, 0710.3216.
[39] J. Brundan,et al. Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.
[40] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[41] C. Stroppel. Category : Quivers and endomorphism rings of projectives , 2003 .
[42] B. Webster,et al. Knot Invariants and Higher Representation Theory , 2013, 1309.3796.
[43] K. Wolffhardt. The Hochschild homology of complete intersections , 1972 .
[44] M. Khovanov. An invariant of tangle cobordisms , 2002, math/0207264.
[45] C. Stroppel. Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology , 2006, Compositio Mathematica.
[46] Vladimir Turaev,et al. Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .
[47] C. Stroppel,et al. Quadratic duals, Koszul dual functors, and applications , 2006, math/0603475.
[48] J. Barrett,et al. Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .
[49] I. Bernstein,et al. Tensor products of finite-and infinite-dimensional representations of semisimple Lie algebras , 1980 .
[50] B. Webster,et al. On uniqueness of tensor products of irreducible categorifications , 2013, 1303.1336.
[51] C. Stroppel,et al. A combinatorial approach to functorial quantum slk knot invariants , 2007, 0709.1971.
[52] J. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .
[53] D. Tubbenhauer,et al. The Blanchet-Khovanov algebras , 2015, 1510.04884.
[54] T. Enright,et al. Categories of Highest Weight Modules: Applications to Classical Hermitian Symmetric Pairs , 1987 .
[55] You Qi,et al. Categorification at prime roots of unity and hopfological finiteness , 2015, 1509.00438.
[56] C. Stroppel,et al. Semi-Infinite Highest Weight Categories , 2018, Memoirs of the American Mathematical Society.
[57] V. Turaev,et al. Ribbon graphs and their invaraints derived from quantum groups , 1990 .
[58] J. Jantzen. Einhüllende Algebren halbeinfacher Lie-Algebren , 1983 .
[59] A. Voronov. Semi-infinite homological algebra , 1993 .
[60] Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.
[61] M. Khovanov. Categorifications of the colored Jones polynomial , 2003, math/0302060.
[62] Igor Frenkel,et al. A Categorification of the Jones Polynomial , 2008 .
[63] C. Stroppel,et al. Categorified Jones-Wenzl Projectors: a comparison , 2011, 1105.3038.
[64] Dror Bar-Natan,et al. Khovanov's homology for tangles and cobordisms , 2004, math/0410495.