A Lie theoretic categorification of the coloured Jones polynomial

We use the machinery of categorified Jones-Wenzl projectors to construct a categorification of a type A Reshetikhin-Turaev invariant of oriented framed tangles where each strand is labeled by an arbitrary finitedimensional representation. As a special case, we obtain a categorification of the coloured Jones polynomial of links.

[1]  An invariant of link cobordisms from Khovanov homology. , 2002, math/0206303.

[2]  C. Stroppel,et al.  Translation and shuffling of projectively presentable modules and a categorification of a parabolic hecke module , 2004 .

[3]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[4]  Sabin Cautis,et al.  Knot homology via derived categories of coherent sheaves I, sl(2) case , 2007, math/0701194.

[5]  Lev Rozansky,et al.  An infinite torus braid yields a categorified Jones-Wenzl projector , 2010, 1005.3266.

[6]  C. Stroppel,et al.  Highest weight categories arising from Khovanov's diagram algebra III: category O , 2008, 0812.1090.

[7]  Kevin Walker,et al.  Fixing the functoriality of Khovanov homology , 2009 .

[8]  C. Stroppel,et al.  Categorification of tensor product representations of slk and category O , 2014, 1407.4267.

[9]  S. Wehrli,et al.  Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links , 2005, Canadian Journal of Mathematics.

[10]  C. Stroppel,et al.  2-block Springer fibers: convolution algebras and coherent sheaves , 2008, 0802.1943.

[11]  P. Seidel A pr 2 00 6 A link invariant from the symplectic geometry of nilpotent slices , 2006 .

[12]  W. Soergel Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .

[13]  Vladimir Turaev,et al.  State sum invariants of 3 manifolds and quantum 6j symbols , 1992 .

[14]  K. Szymiczek Tensor product of algebras , 2017 .

[15]  Wolfgang Soergel,et al.  The combinatorics of Harish-Chandra bimodules. , 1992 .

[16]  C. Stroppel A structure theorem for Harish-Chandra bimodules via coinvariants and Golod rings , 2004 .

[17]  C. Stroppel,et al.  Twisting Functors on O , 2003 .

[18]  Sabin Cautis Clasp technology to knot homology via the affine Grassmannian , 2012, 1207.2074.

[19]  Twisted Verma Modules , 2001, math/0105012.

[20]  S. Ryom-Hansen Koszul Duality of Translation—and Zuckerman Functors , 2009, 0905.0407.

[21]  M. Khovanov,et al.  A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .

[22]  S. Arkhipov Algebraic construction of contragradient quasi-Verma modules in positive characteristic , 2001, math/0105042.

[23]  C. Stroppel,et al.  Completions of Grothendieck groups , 2011, 1105.2715.

[24]  C. Stroppel,et al.  Highest weight categories arising from Khovanov's diagram algebra II: Koszulity , 2008, 0806.3472.

[25]  C. Stroppel Category O: gradings and translation functors , 2003 .

[26]  Vyacheslav Krushkal,et al.  Categorification of the Jones-Wenzl Projectors , 2010, 1005.5117.

[27]  C. Stroppel Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors , 2005 .

[28]  C. Stroppel,et al.  A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products , 2005, math/0511467.

[29]  Aaron D. Lauda,et al.  A categorification of quantum sl(n) , 2008, 0807.3250.

[30]  Matthew Hogancamp A polynomial action on colored sl(2) link homology , 2014, 1405.2574.

[31]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[32]  Alexei Oblomkov,et al.  Torus knots and the rational DAHA , 2012, 1207.4523.

[33]  C. Blanchet An oriented model for Khovanov homology , 2010, 1405.7246.

[34]  B. Webster,et al.  Tensor product algebras, Grassmannians and Khovanov homology , 2013, 1312.7357.

[35]  V. Mazorchuk,et al.  On Arkhipov’s and Enright’s functors , 2005 .

[36]  E. Lee An Endomorphism of the Khovanov Invariant , 2008 .

[37]  Evgeny Gorsky,et al.  On Stable Khovanov Homology of Torus Knots , 2012, Exp. Math..

[38]  Sabin Cautis,et al.  Knot homology via derived categories of coherent sheaves II, $\mathfrak{sl}_{m}$ case , 2007, 0710.3216.

[39]  J. Brundan,et al.  Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras , 2008, 0808.2032.

[40]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[41]  C. Stroppel Category : Quivers and endomorphism rings of projectives , 2003 .

[42]  B. Webster,et al.  Knot Invariants and Higher Representation Theory , 2013, 1309.3796.

[43]  K. Wolffhardt The Hochschild homology of complete intersections , 1972 .

[44]  M. Khovanov An invariant of tangle cobordisms , 2002, math/0207264.

[45]  C. Stroppel Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology , 2006, Compositio Mathematica.

[46]  Vladimir Turaev,et al.  Invariants of 3-manifolds via link polynomials and quantum groups , 1991 .

[47]  C. Stroppel,et al.  Quadratic duals, Koszul dual functors, and applications , 2006, math/0603475.

[48]  J. Barrett,et al.  Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds , 1994 .

[49]  I. Bernstein,et al.  Tensor products of finite-and infinite-dimensional representations of semisimple Lie algebras , 1980 .

[50]  B. Webster,et al.  On uniqueness of tensor products of irreducible categorifications , 2013, 1303.1336.

[51]  C. Stroppel,et al.  A combinatorial approach to functorial quantum slk knot invariants , 2007, 0709.1971.

[52]  J. Humphreys Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .

[53]  D. Tubbenhauer,et al.  The Blanchet-Khovanov algebras , 2015, 1510.04884.

[54]  T. Enright,et al.  Categories of Highest Weight Modules: Applications to Classical Hermitian Symmetric Pairs , 1987 .

[55]  You Qi,et al.  Categorification at prime roots of unity and hopfological finiteness , 2015, 1509.00438.

[56]  C. Stroppel,et al.  Semi-Infinite Highest Weight Categories , 2018, Memoirs of the American Mathematical Society.

[57]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[58]  J. Jantzen Einhüllende Algebren halbeinfacher Lie-Algebren , 1983 .

[59]  A. Voronov Semi-infinite homological algebra , 1993 .

[60]  Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.

[61]  M. Khovanov Categorifications of the colored Jones polynomial , 2003, math/0302060.

[62]  Igor Frenkel,et al.  A Categorification of the Jones Polynomial , 2008 .

[63]  C. Stroppel,et al.  Categorified Jones-Wenzl Projectors: a comparison , 2011, 1105.3038.

[64]  Dror Bar-Natan,et al.  Khovanov's homology for tangles and cobordisms , 2004, math/0410495.