Generating Independent Replicates Directly from the Posterior Distribution for a Class of Spatial Latent Gaussian Process Models

Markov chain Monte Carlo (MCMC) allows one to generate dependent replicates from a posterior distribution for effectively any Bayesian hierarchical model. However, MCMC can produce a significant computational burden. This motivates us to consider finding expressions of the posterior distribution that are computationally straightforward to obtain independent replicates from directly. We focus on a broad class of Bayesian latent Gaussian process (LGP) models that allow for spatially dependent data. First, we derive a new class of distributions we refer to as the generalized conjugate multivariate (GCM) distribution. The GCM distribution's theoretical development is similar to that of the CM distribution with two main differences; namely, (1) the GCM allows for latent Gaussian process assumptions, and (2) the GCM explicitly accounts for hyperparameters through marginalization. The development of GCM is needed to obtain independent replicates directly from the exact posterior distribution, which has an efficient projection/regression form. Hence, we refer to our method as Exact Posterior Regression (EPR). Illustrative examples are provided including simulation studies for weakly stationary spatial processes and spatial basis function expansions. An additional analysis of poverty incidence data from the U.S. Census Bureau's American Community Survey (ACS) using a conditional autoregressive model is presented.

[1]  S. Banerjee,et al.  Exact Bayesian Geostatistics Using Predictive Stacking , 2023, 2304.12414.

[2]  J. Bradley,et al.  Deep hierarchical generalized transformation models for spatio-temporal data with discrepancy errors , 2023, Spatial Statistics.

[3]  E. Kang,et al.  Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations , 2022, Journal of Agricultural, Biological and Environmental Statistics.

[4]  Yeo Jin Jung,et al.  Fast Bayesian Functional Regression for Non-Gaussian Spatial Data , 2023, Bayesian Analysis.

[5]  Erica M. Porter,et al.  Objective Bayesian Model Selection for Spatial Hierarchical Models with Intrinsic Conditional Autoregressive Priors , 2023, Bayesian Analysis.

[6]  A. Finley,et al.  Conjugate sparse plus low rank models for efficient Bayesian interpolation of large spatial data , 2022, Environmetrics.

[7]  G. Molenberghs,et al.  A spatial model to jointly analyze self‐reported survey data of COVID‐19 symptoms and official COVID‐19 incidence data , 2022, Biometrical journal. Biometrische Zeitschrift.

[8]  F. Lindgren,et al.  The SPDE approach for Gaussian and non-Gaussian fields: 10 years and still running , 2021, Spatial Statistics.

[9]  A. Canale,et al.  Efficient Posterior Sampling for Bayesian Poisson Regression , 2021, Journal of Computational and Graphical Statistics.

[10]  Jonathan R. Bradley,et al.  An Approach to Incorporate Subsampling Into a Generic Bayesian Hierarchical Model , 2021, J. Comput. Graph. Stat..

[11]  I. I. Skopina Wavelet Theory , 2021 .

[12]  Jonathan R. Bradley,et al.  Joint Bayesian Analysis of Multiple Response-Types Using the Hierarchical Generalized Transformation Model , 2020, Bayesian Analysis.

[13]  Scott H. Holan,et al.  A general Bayesian model for heteroskedastic data with fully conjugate full-conditional distributions , 2020, Journal of Statistical Computation and Simulation.

[14]  A. Finley,et al.  High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach , 2020, Environmetrics.

[15]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[16]  Paul A. Parker,et al.  Conjugate Bayesian unit‐level modelling of count data under informative sampling designs , 2019, Stat.

[17]  Jonathan R. Bradley,et al.  Bayesian analysis of areal data with unknown adjacencies using the stochastic edge mixed effects model , 2019, Spatial Statistics.

[18]  Ming-Hui Chen,et al.  Bayesian Variable Selection for Pareto Regression Models with Latent Multivariate Log Gamma Process with Applications to Earthquake Magnitudes. , 2019, Geosciences.

[19]  Jonathan R. Bradley,et al.  Spatio‐temporal models for big multinomial data using the conditional multivariate logit‐beta distribution , 2018, Journal of Time Series Analysis.

[20]  Tim van Erven,et al.  Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model. , 2018, 1810.10883.

[21]  C. Wikle,et al.  Bayesian Hierarchical Models With Conjugate Full-Conditional Distributions for Dependent Data From the Natural Exponential Family , 2017, 1701.07506.

[22]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[23]  Alan E. Gelfand,et al.  Spatial statistics and Gaussian processes: A beautiful marriage , 2016 .

[24]  James M. Flegal,et al.  Multivariate output analysis for Markov chain Monte Carlo , 2015, Biometrika.

[25]  C. Wikle,et al.  Computationally Efficient Distribution Theory for Bayesian Inference of High-Dimensional Dependent Count-Valued Data , 2015, 1512.07273.

[26]  Sudipto Banerjee,et al.  Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets , 2014, Journal of the American Statistical Association.

[27]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[28]  Duncan Lee,et al.  CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors , 2013 .

[29]  James S. Hodges,et al.  Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects , 2013 .

[30]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[31]  R. Christian,et al.  A Short History of MCMC: Subjective Recollections from Incomplete Data , 2011 .

[32]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[33]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[34]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[35]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[36]  J. Rao,et al.  Small area estimation of poverty indicators , 2009 .

[37]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[38]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[39]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[40]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[41]  Nancy K. Torrieri America is Changing, and So is the Census , 2007 .

[42]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[43]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[44]  J. Ibrahim,et al.  Conjugate priors for generalized linear models , 2003 .

[45]  Mark Von Tress,et al.  Generalized, Linear, and Mixed Models , 2003, Technometrics.

[46]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[47]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[48]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[49]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[50]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[51]  G. Wahba Spline Models for Observational Data , 1990 .

[52]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[53]  Uang,et al.  Bayesian clustering of spatial functional data with application to a human mobility study during COVID-19 , 2023, The Annals of Applied Statistics.

[54]  Onathan,et al.  LATENT MULTIVARIATE LOG-GAMMA MODELS FOR HIGH-DIMENSIONAL MULTI-TYPE RESPONSES WITH APPLICATION TO DAILY FINE PARTICULATE MATTER AND MORTALITY COUNTS , 2022 .

[55]  C. Wikle,et al.  Hierarchical Models for Spatial Data with Errors that are Correlated with the Latent Process , 2019, Statistica Sinica.

[56]  J. Bradley,et al.  A Bayesian spatial–temporal model with latent multivariate log‐gamma random effects with application to earthquake magnitudes , 2018 .

[57]  Danny Pfeffermann,et al.  Small Area Estimation , 2011, International Encyclopedia of Statistical Science.

[58]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[59]  T. Lu,et al.  Inverses of 2 × 2 block matrices , 2002 .

[60]  Noel A Cressie,et al.  Empirical Bayesian Spatial Prediction Using Wavelets , 1999 .

[61]  H. Theil Studies in global econometrics , 1996 .

[62]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .