Competition of elasticity and flexoelectricity for bistable alignment of nematic liquid crystals on patterned substrates.

We show that patterned surfaces can promote bistable configurations of nematics for reasons other than the symmetry of the surface. Numerical and analytical calculations reveal that a nematic liquid crystal in contact with a striped surface is subject to the competing aligning influences of elastic anisotropy, differing energy cost of various types of deformation, and flexoelectricity, curvature-induced spontaneous polarization. These effects favor opposing ground states where the azimuthal alignment is, respectively, parallel or perpendicular to the stripes. Material parameters for which the effect might be observed lie within the range measured for bent-core nematogens.

[1]  W. Marsden I and J , 2012 .

[2]  Meyer,et al.  New ground state for the Splay-Fréedericksz transition in a polymer nematic liquid crystal. , 1985, Physical review letters.

[3]  N. Clark,et al.  Organization of liquid crystals on submicron scale topographic patterns with fourfold symmetry prepared by thiolene photopolymerization-based nanoimprint lithography , 2008 .

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  Lei Tang,et al.  Parallel adaptive mesh refinement for first-order system least squares , 2012, Numer. Linear Algebra Appl..

[6]  Thomas A. Manteuffel,et al.  First-Order System Least Squares for Incompressible Resistive Magnetohydrodynamics , 2010, SIAM J. Sci. Comput..

[7]  Badel L. Mbanga,et al.  Giant flexoelectricity of bent-core nematic liquid crystals. , 2006, Physical review letters.

[8]  Gerhard Starke,et al.  Gauss–Newton Multilevel Methods for Least-Squares Finite Element Computations of Variably Saturated Subsurface Flow , 2000, Computing.

[9]  Stephen H. Perlmutter,et al.  Degradation of liquid crystal device performance due to selective adsorption of ions , 1996 .

[10]  Maureen K. McCamley,et al.  Detection of alignment changes at the open surface of a confined nematic liquid crystal sensor , 2009 .

[11]  D. J. Evans Sparsity and its applications , 1986 .

[12]  Thomas A. Manteuffel,et al.  First-Order System Least Squares (FOSLS) for Planar Linear Elasticity: Pure Traction Problem , 1998 .

[13]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[14]  S. Evans,et al.  Nematic liquid crystal alignment on chemical patterns , 2007 .

[15]  N. Clark,et al.  Alignment of liquid crystals with patterned isotropic surfaces. , 2001, Science.

[16]  N. Mottram,et al.  Flexoelectric switching in a bistable nematic device. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Jörg Schröder,et al.  A modified least‐squares mixed finite element with improved momentum balance , 2010 .

[18]  P. Rudquist,et al.  On the flexoelectric effect in nematics , 1997 .

[19]  Panayot S. Vassilevski,et al.  A generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed aggregation (SA) multigrid , 2008, Numer. Linear Algebra Appl..

[20]  T. Manteuffel,et al.  FIRST-ORDER SYSTEM LEAST SQUARES FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS : PART II , 1994 .

[21]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[22]  S. Žumer,et al.  Nematic ordering in a cell with modulated surface anchoring: effects of flexoelectricity. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  G. Barbero,et al.  Anchoring energy and easy direction of non uniform surfaces , 1992 .

[24]  T. Atherton,et al.  Orientational transition in a nematic liquid crystal at a patterned surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Robert B. Meyer,et al.  Piezoelectric Effects in Liquid Crystals , 1969 .

[26]  Hiroshi Yokoyama,et al.  Surface alignment bistability of nematic liquid crystals by orientationally frustrated surface patterns , 2001 .

[27]  P. Martinot-Lagarde,et al.  Electric Polar Surface Instability in Nematic Liquid Crystals , 1986 .

[28]  Lei Tang,et al.  Efficiency Based Adaptive Local Refinement for First-Order System Least-Squares Formulations , 2011, SIAM J. Sci. Comput..

[29]  Hiroshi Yokoyama,et al.  Tristable nematic liquid-crystal device using micropatterned surface alignment , 2002, Nature.

[30]  J. Sambles,et al.  Fully leaky guided mode study of the flexoelectric effect and surface polarization in hybrid aligned nematic cells , 2002 .

[31]  T. Atherton Phase diagrams for a semi-infinite nematic in contact with a micropatterned surface , 2010 .

[32]  M. Schadt,et al.  Photoaligned bistable twisted nematic liquid crystal displays , 2003 .

[33]  Thomas A. Manteuffel,et al.  Multilevel First-Order System Least Squares for Nonlinear Elliptic Partial Differential Equations , 2003, SIAM J. Numer. Anal..

[34]  Stephen Kitson,et al.  Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states , 2002 .

[35]  Rahul R. Shah,et al.  Principles for Measurement of Chemical Exposure Based on Recognition-Driven Anchoring Transitions in Liquid Crystals , 2001, Science.