Focusing nanocrystal size distributions via production control.

We present a theoretical description of how continuous monomer production affects the focusing of nanocrystal size distributions in solution. We show that sufficiently high monomer production rates can drive a decrease in the polydispersity even as the average nanocrystal size increases. This is in sharp contrast to Ostwald ripening, where polydispersity increases with mean crystal size. We interpret several experimental nanocrystal studies through our model and show how production-controlled growth promises exquisite control over the size and polydispersity of functional nanocrystals.

[1]  Klavs F Jensen,et al.  Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. , 2011, Angewandte Chemie.

[2]  A Paul Alivisatos,et al.  Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals. , 2010, Journal of the American Chemical Society.

[3]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.

[4]  M. Bawendi,et al.  Mechanistic insights into the formation of InP quantum dots. , 2009, Angewandte Chemie.

[5]  Darrick J. Williams,et al.  A reduction pathway in the synthesis of PbSe nanocrystal quantum dots. , 2009, Journal of the American Chemical Society.

[6]  Xiaogang Peng,et al.  Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: self-focusing via ripening. , 2007, Journal of the American Chemical Society.

[7]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[8]  A. Alivisatos,et al.  Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis. , 2007, Journal of the American Chemical Society.

[9]  J. Schlueter,et al.  Effect of Ligand−Metal Interactions on the Growth of Transition-Metal and Alloy Nanoparticles , 2006 .

[10]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[11]  Shuming Nie,et al.  Engineering Luminescent Quantum Dots for In Vivo Molecular and Cellular Imaging , 2006, Annals of Biomedical Engineering.

[12]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[13]  N. Mantzaris Liquid-phase synthesis of nanoparticles: Particle size distribution dynamics and control , 2005 .

[14]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[15]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[16]  Kiyoshi Kanie,et al.  Organic-inorganic hybrid liquid crystals: hybridization of calamitic liquid-crystalline amines with monodispersed anisotropic TiO2 nanoparticles. , 2003, Journal of the American Chemical Society.

[17]  C. Sorensen,et al.  Digestive-Ripening Agents for Gold Nanoparticles: Alternatives to Thiols , 2003 .

[18]  Savka I. Stoeva,et al.  Digestive Ripening of Thiolated Gold Nanoparticles: The Effect of Alkyl Chain Length , 2002 .

[19]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[20]  Y. Yamaguchi,et al.  The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix. , 2000, Advances in colloid and interface science.

[21]  Christopher M. Sorensen,et al.  Digestive Ripening, Nanophase Segregation and Superlattice Formation in Gold Nanocrystal Colloids , 2000 .

[22]  T. Sugimoto Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution II: silver bromide , 2000 .

[23]  C. Sorensen,et al.  Ligand-Induced Gold Nanocrystal Superlattice Formation in Colloidal Solution , 1999 .

[24]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[25]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[26]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[27]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[28]  T. Sugimoto The theory of the nucleation of monodisperse particles in open systems and its application to agbr systems , 1992 .

[29]  T. Sugimoto Preparation of monodispersed colloidal particles , 1987 .

[30]  M. Kahlweit,et al.  Ostwald ripening of precipitates , 1975 .

[31]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[32]  Howard Reiss,et al.  The Growth of Uniform Colloidal Dispersions , 1951 .

[33]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .