Formation sketching: an approach to stylize groups in crowd simulation

Most of existing crowd simulation algorithms focus on the moving trajectories of individual agents, while collective group formations are often roughly learned from video examples or manually specified via various hard constraints (e.g., pre-defined keyframes of exact agent distributions). In this paper, we present an intuitive yet efficient approach to generate arbitrary and precise group formations by sketching formation boundaries. Our approach can automatically compute the desired position of each agent in the target formation and generate the agent correspondences between keyframes. When high-level group formations need to be formed on-the-fly in a dynamic environment such as "switching to the circle formation at about one hundred meters ahead", our algorithm will coordinate and compute appropriate actions for each agent by seamlessly fusing local formation dynamics and global group locomotion. Through a number of experiments, we demonstrate that our approach is efficient and adaptive to variations of group scales (i.e., number of agents), group positions, and environment obstacles.

[1]  Mark H. Overmars,et al.  Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2004) , 2022 .

[2]  Yizhou Yu,et al.  Shape-constrained flock animation , 2008 .

[3]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[4]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[5]  Soraia Raupp Musse,et al.  AN INTERACTIVE MODEL FOR STEERING BEHAVIORS OF GROUPS OF CHARACTERS , 2010, Appl. Artif. Intell..

[6]  Dani Lischinski,et al.  Crowds by Example , 2007, Comput. Graph. Forum.

[7]  Demetri Terzopoulos,et al.  A decision network framework for the behavioral animation of virtual humans , 2007, SCA '07.

[8]  Craig W. Reynolds Steering Behaviors For Autonomous Characters , 1999 .

[9]  Masaki Oshita,et al.  Sketch-Based Interface for Crowd Animation , 2009, Smart Graphics.

[10]  Jessica K. Hodgins,et al.  Reactive pedestrian path following from examples , 2004, The Visual Computer.

[11]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[12]  Taesoo Kwon,et al.  Group motion editing , 2008, SIGGRAPH 2008.

[13]  Soraia Raupp Musse,et al.  Tree Paths: A New Model for Steering Behaviors , 2009, IVA.

[14]  Dinesh Manocha,et al.  Composite agents , 2008, SCA '08.

[15]  Sébastien Paris,et al.  Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach , 2007, Comput. Graph. Forum.

[16]  Takeshi Sakuma,et al.  Psychological model for animating crowded pedestrians: Virtual Humans and Social Agents , 2005 .

[17]  Jehee Lee,et al.  Morphable crowds , 2010, SIGGRAPH 2010.

[18]  Lucas Kovar,et al.  Fast and accurate goal-directed motion synthesis for crowds , 2005, SCA '05.

[19]  Daniel Cohen-Or,et al.  Fitting behaviors to pedestrian simulations , 2009, SCA '09.

[20]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[21]  Petros Faloutsos,et al.  Egocentric affordance fields in pedestrian steering , 2009, I3D '09.

[22]  Petros Faloutsos,et al.  Situation agents: agent‐based externalized steering logic , 2010, Comput. Animat. Virtual Worlds.

[23]  John Funge,et al.  Cognitive modeling: knowledge, reasoning and planning for intelligent characters , 1999, SIGGRAPH.

[24]  Rahul Narain,et al.  Aggregate dynamics for dense crowd simulation , 2009, SIGGRAPH 2009.

[25]  Zhigang Deng,et al.  Context-Aware Motion Diversification for Crowd Simulation , 2011, IEEE Computer Graphics and Applications.

[26]  Dimitris N. Metaxas,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Group Behavior from Video: a Data-driven Approach to Crowd Simulation , 2022 .

[27]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2007, Graph. Model..

[28]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH Classes.

[29]  Yu-Chi Lai,et al.  Group motion graphs , 2005, SCA '05.

[30]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[31]  Stéphane Donikian,et al.  Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments , 2004, Comput. Graph. Forum.

[32]  Adrien Treuille,et al.  Continuum crowds , 2006, ACM Trans. Graph..

[33]  Takeshi Sakuma,et al.  Psychological model for animating crowded pedestrians , 2005, Comput. Animat. Virtual Worlds.

[34]  D. Thalmann,et al.  Virtual Humans’ Behaviour: Individuals, Groups, and Crowds , 2000 .

[35]  Taesoo Kwon,et al.  Spectral‐Based Group Formation Control , 2009, Comput. Graph. Forum.

[36]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[37]  Renato Silveira,et al.  Managing coherent groups , 2008 .