Simulation of He(+) induced afterpulses in PMTs.

We report on a Monte Carlo simulation study of afterpulses due to trace gases in EMI 9235QA photomultipliers that are widely used in many luminescence detection systems operating in single photon counting mode. The numerical simulation takes into account the nonuniform electric field distribution and processes including elastic scattering: e + He → e + He, excitation: e + He → e + He(∗), ionization: e + He → 2e + He(+), elastic scattering: He(+) + He → He(+) + He, charge transfer: He(+) + He → Hef + He(+) (Hef indicates a fast neutral) and elastic scattering: Hef + He → Hef + He(f). The simulated and the measured time of flight distributions agree well. In addition, the above simulated processes demonstrate mechanisms of the observed series of pulses brought about by a single helium atom ionization.

[1]  Konrad Tudyka,et al.  A study on photomultiplier afterpulses in TL/OSL readers , 2016 .

[2]  D. Richter,et al.  Lexsyg smart — a luminescence detection system for dosimetry, material research and dating application , 2015 .

[3]  G. Adamiec,et al.  Estimation of equivalent dose and its uncertainty in the OSL SAR protocol when count numbers do not follow a Poisson distribution , 2015 .

[4]  D. Richter,et al.  Lexsyg — A new system for luminescence research , 2013 .

[5]  G. Adamiec,et al.  Statistics of count numbers from a photomultiplier tube and its implications for error estimation , 2012 .

[6]  T. Ropponen,et al.  IBSIMU: a three-dimensional simulation software for charged particle optics. , 2010, The Review of scientific instruments.

[7]  I. G. Park,et al.  Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube , 2009, 0911.5336.

[8]  A. Breskin,et al.  Ion-induced secondary electron emission from K-Cs-Sb, Na-K-Sb and Cs-Sb photocathodes and its relevance to the operation of gaseous avalanche photomultipliers , 2009, 0904.4881.

[9]  Nural Akchurin,et al.  A study on ion initiated photomultiplier afterpulses , 2007 .

[10]  B. Lubsandorzhiev,et al.  Photoelectron backscattering in vacuum phototubes , 2006 .

[11]  Yong-ki Kim,et al.  Electron-Impact Cross Sections for Dipole- and Spin-Allowed Excitations of Hydrogen, Helium, and Lithium , 2002, Journal of research of the National Institute of Standards and Technology.

[12]  P. Hartmann,et al.  Effect of different elementary processes on the breakdown in low-pressure helium gas , 2000 .

[13]  B. Lubsandorzhiev,et al.  Studies of prepulses and late pulses in the 8″ electron tubes series of photomultipliers , 2000 .

[14]  A. Phelps,et al.  Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons , 1999 .

[15]  L. Bøtter-Jensen Luminescence techniques: instrumentation and methods , 1997 .

[16]  V. J. Bortolot Improved OSL excitation with fiberoptics and focused lamps , 1997 .

[17]  M. Saunders Solution of sparse rectangular systems using LSQR and CRAIG , 1995 .

[18]  Rudd,et al.  Binary-encounter-dipole model for electron-impact ionization. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  Charles K. Birdsall,et al.  Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC , 1991 .

[20]  Graves,et al.  Self-consistent model of a direct-current glow discharge: Treatment of fast electrons. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[21]  S. Trajmar,et al.  Total electron scattering cross sections. I. He, Ne, Ar, Xe , 1985 .

[22]  P. Benetti,et al.  Study of afterpulse effects in photomultipliers , 1983 .

[23]  J. Boeuf,et al.  A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium , 1982 .

[24]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[25]  I. Lazzizzera,et al.  Absolute total cross section measurements for intermediate energy electron scattering. I. He , 1979 .

[26]  R. Bonham,et al.  Electron-helium absolute total scattering cross sections from 0. 5 to 50 eV , 1978 .

[27]  W. Kauppila,et al.  Measurements of total scattering cross sections for low-energy positrons and electrons colliding with helium and neon atoms. [0. 3 to 30 eV] , 1978 .

[28]  P. B. Coates A theory of afterpulse formation in photomultipliers and the prepulse height distribution , 1973 .

[29]  P. B. Coates,et al.  The origins of afterpulses in photomultipliers , 1973 .

[30]  G. A. Morton,et al.  Afterpulses in Photomultipliers , 1967 .

[31]  J. Ready,et al.  Mechanisms of Laser-Surface Interactions , 1966 .

[32]  J. Burns ANGULAR DISTRIBUTION OF SECONDARY ELECTRONS FROM (100) FACES OF COPPER AND NICKEL , 1960 .

[33]  J. Simons,et al.  Elastic and Inelastic Scattering of Low‐Velocity He+ Ions in Helium , 1957 .

[34]  H. W. Berry Secondary Electron Emission by Fast Neutral Molecules and Neutralization of Positive Ions , 1948 .

[35]  T. Kalvas Development and use of computational tools for modelling negative hydrogen ion source extraction systems , 2013 .

[36]  U. Akgun,et al.  Afterpulse timing and rate investigation of three different Hamamatsu Photomultiplier Tubes , 2008 .

[37]  Earl C. Beaty,et al.  Measurements of Secondary‐Electron Spectra Produced by Electron Impact Ionization of a Number of Simple Gases , 1971 .