On the use of the notion of suitable weak solutions in CFD
暂无分享,去创建一个
[1] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[2] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[3] Jean-Luc Guermond,et al. MATHEMATICAL ANALYSIS OF A SPECTRAL HYPERVISCOSITY LES MODEL FOR THE SIMULATION OF TURBULENT FLOWS , 2003 .
[4] R. Temam. Navier-Stokes Equations , 1977 .
[5] Jean-Luc Guermond,et al. Finite-element-based Faedo–Galerkin weak solutions to the Navier–Stokes equations in the three-dimensional torus are suitable , 2006 .
[6] Darryl D. Holm,et al. A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.
[7] Hiroko Morimoto,et al. On the Navier-Stokes initial value problem , 1974 .
[8] Claes Johnson,et al. Computational Turbulent Incompressible Flow: Applied Mathematics: Body and Soul 4 , 2007 .
[9] Darryl D. Holm,et al. On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] Jean-Luc Guermond,et al. Faedo-Galerkin weak solutions of the Navier-Stokes equations with dirichlet boundary conditions are suitable , 2007 .
[11] Claude Basdevant,et al. A Study of Barotropic Model Flows: Intermittency, Waves and Predictability , 1981 .
[12] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[13] Volker John,et al. Analysis of Numerical Errors in Large Eddy Simulation , 2002, SIAM J. Numer. Anal..
[14] B. Legras,et al. A comparison of the contour surgery and pseudo-spectral methods , 1993 .
[15] Darryl D. Holm,et al. The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.
[16] R. Temam. Une méthode d'approximation de la solution des équations de Navier-Stokes , 1968 .
[17] Winding, Fingering and Reconnection Mechanisms of Closely Interacting Vortex Tubes in Three Dimensions. , 1991 .
[18] Silvia Bertoluzza,et al. The discrete commutator property of approximation spaces , 1999 .
[19] Johan Hoffman,et al. Stability of the dual Navier-Stokes equations and efficient computation of mean output in turbulent flow using adaptive DNS/LES , 2006 .
[20] J. Lions. Sur certaines équations paraboliques non linéaires , 1965 .
[21] Fanghua Lin,et al. A new proof of the Caffarelli‐Kohn‐Nirenberg theorem , 1998 .
[22] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .
[23] O. A. Ladyzhenskai︠a︡,et al. Boundary value problems of mathematical physics and related aspects of function theory , 1970 .
[24] Claes Johnson,et al. On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .
[25] Vladimir Scheffer. Hausdorff measure and the Navier-Stokes equations , 1977 .
[26] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[27] Jean-Luc Guermond,et al. Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .
[28] J. Guermond,et al. On the construction of suitable solutions to the Navier-Stokes equations and questions regarding the definition of large eddy simulation , 2005 .
[29] Darryl D. Holm,et al. The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.
[30] Jean-Luc Guermond,et al. Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .
[31] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[32] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[33] Juhani Pitkäranta,et al. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .
[34] B. Geurts. Elements of direct and large-eddy simulation , 2003 .
[35] Raoul Robert,et al. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations , 2000 .
[36] Darryl D. Holm,et al. Regularization modeling for large-eddy simulation , 2002, nlin/0206026.
[37] Peter Hansbo,et al. On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .