Dispersion of nondegenerate nonlinear refraction in semiconductors.

We use our recently developed beam-deflection technique to measure the dispersion of the nondegenerate nonlinear refraction (NLR) of direct-gap semiconductors. The magnitude and sign of the NLR coefficient n2(ωa; ωb) are determined over a broad spectral range for different values of nondegeneracy. In the extremely nondegenerate case, n2(ωa; ωb) is positively enhanced near the two-photon absorption (2PA) edge and is significantly larger than its degenerate counterpart, suggesting applications for nondegenerate all-optical switching. At higher photon energies within the 2PA regime, n2(ωa; ωb) switches sign to negative over a narrow wavelength range. This strong anomalous nonlinear dispersion provides large phase modulation of a femtosecond pulse with bandwidth centered near the zero-crossing frequency. The measured nondegenerate dispersion closely follows our earlier predictions based on nonlinear Kramers-Kronig relations [Sheik-Bahae et. al, IEEE J. Quant. Electron. 30, 249 (1994)].

[1]  David J. Hagan,et al.  Nondegenerate two- and three-photon nonlinearities in semiconductors , 2016, SPIE Defense + Security.

[2]  J. Perry,et al.  Quasi-three-level model applied to measured spectra of nonlinear absorption and refraction in organic molecules , 2016 .

[3]  David J. Hagan,et al.  Nonlinear refraction dynamics of solvents and gases , 2016, SPIE LASE.

[4]  Matthew Reichert,et al.  Observation of Nondegenerate Two-Photon Gain in GaAs. , 2016, Physical review letters.

[5]  E. V. Van Stryland,et al.  Three-dimensional IR imaging with uncooled GaN photodiodes using nondegenerate two-photon absorption. , 2015, Optics Express.

[6]  Peng Zhao,et al.  Beam deflection measurement of bound-electronic and rotational nonlinear refraction in molecular gases. , 2015, Optics express.

[7]  David J. Hagan,et al.  Temporal, Spectral, and Polarization Dependence of the Nonlinear Optical Response of Carbon Disulfide , 2014 .

[8]  Charles Santori,et al.  Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators. , 2013, Optics express.

[9]  Matthew Reichert,et al.  Beam deflection measurement of time and polarization resolved ultrafast nonlinear refraction. , 2013, Optics letters.

[10]  E. V. Van Stryland,et al.  Extremely nondegenerate two-photon absorption in direct-gap semiconductors [Invited]. , 2011, Optics express.

[11]  David J. Hagan,et al.  Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption , 2011 .

[12]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[13]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[14]  S. Barlow,et al.  Broadband Z-scan characterization using a high-spectral-irradiance, high-quality supercontinuum , 2008 .

[15]  E. V. Van Stryland,et al.  Dispersion of nonlinear refraction and two-photon absorption using a white-light continuum Z-scan. , 2005, Optics express.

[16]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[17]  E. V. Van Stryland,et al.  White-light continuum Z-scan technique for nonlinear materials characterization. , 2004, Optics express.

[18]  B. Jalali,et al.  Time-wavelength spectroscopy for chemical sensing , 2004, IEEE Photonics Technology Letters.

[19]  A. Zheltikov,et al.  Frequency–time and time–space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump–probe techniques , 2003 .

[20]  David J. Hagan,et al.  Experiment and analysis of two-photon absorption spectroscopy using a white-light continuum probe , 2002 .

[21]  P.-T. Ho,et al.  All-optical nonlinear switching in GaAs-AlGaAs microring resonators , 2002, IEEE Photonics Technology Letters.

[22]  Stegeman,et al.  Optical Spatial Solitons and Their Interactions: Universality and Diversity. , 1999, Science.

[23]  A. S. Bhushan,et al.  Time-domain optical sensing , 1999 .

[24]  J. S. Aitchison,et al.  Discrete Spatial Optical Solitons in Waveguide Arrays , 1998 .

[25]  D. Milam Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. , 1998, Applied optics.

[26]  Aversa,et al.  Third-order optical nonlinearities in semiconductors: The two-band model. , 1994, Physical review. B, Condensed matter.

[27]  Hutchings,et al.  Theory of the dispersion of ultrafast nonlinear refraction in zinc-blende semiconductors below the band edge. , 1994, Physical review. B, Condensed matter.

[28]  Yoshimasa Sugimoto,et al.  Experimental investigation on high‐speed switching characteristics of a novel symmetric Mach–Zehnder all‐optical switch , 1994 .

[29]  Mansoor Sheik-Bahae,et al.  Nondegenerate optical Kerr effect in semiconductors , 1994 .

[30]  J. Aitchison,et al.  All-optical switching based on nondegenerate phase shifts from a cascaded second-order nonlinearity. , 1993, Optics letters.

[31]  David J. Hagan,et al.  Nondegenerate two-photon absorption spectra of ZnSe, ZnS and ZnO , 1993 .

[32]  D. C. Hutchings,et al.  Nondegenerate two-photon absorption in zinc blende semiconductors , 1992 .

[33]  J. S. Aitchison,et al.  Ultrafast all‐optical switching in semiconductor nonlinear directional couplers at half the band gap , 1992 .

[34]  Mansoor Sheik-Bahae,et al.  Dispersion of bound electron nonlinear refraction in solids , 1991 .

[35]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[36]  George I. Stegeman,et al.  All-optical waveguide switching , 1990 .

[37]  George I. Stegeman,et al.  Effect of two‐photon absorption on all‐optical guided‐wave devices , 1989 .

[38]  G I Stegeman,et al.  Two-photon absorption as a limitation to all-optical switching. , 1989, Optics letters.

[39]  Kamjou Mansour,et al.  Optical limiting with semiconductors , 1988 .

[40]  George I. Stegeman,et al.  Third order nonlinear integrated optics , 1988 .

[41]  E. W. Stryland,et al.  Energy band-gap dependence of two-photon absorption. , 1985, Optics letters.

[42]  M. J. Soileau,et al.  Two-Photon Absorption, Nonlinear Refraction and Optical Limiting in Semiconductors , 1985 .

[43]  J. Guerra,et al.  Weighted nonlinear regression analysis of a Sellmeier expansion: comparison of several nonlinear fits of CdS dispersion. , 1985, Applied optics.

[44]  B. Tatian,et al.  Fitting refractive-index data with the Sellmeier dispersion formula. , 1984, Applied optics.

[45]  A. Kaplan “External” self-focusing of light by a nonlinear layer , 1969 .

[46]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[47]  W. Bond Measurement of the Refractive Indices of Several Crystals , 1965 .

[48]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[49]  B. Jalali,et al.  Amplified wavelength–time transformation for real-time spectroscopy , 2008 .

[50]  D. J. Hagan,et al.  Kramers-Krönig relations in nonlinear optics , 1992 .

[51]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.