Combinatorial complexity bounds for arrangements of curves and surfaces

The authors study both the incidence counting and the many-faces problem for various kinds of curves, including lines, pseudolines, unit circles, general circles, and pseudocircles. They also extend the analysis to three dimensions, where they concentrate on the case of spheres, which is relevant for the three-dimensional unit-distance problem. They obtain upper bounds for certain quantities. The authors believe that the techniques they use are of independent interest.<<ETX>>

[1]  Herbert Edelsbrunner,et al.  On the maximal number of edges of many faces in an arrangement , 1986, J. Comb. Theory, Ser. A.

[2]  E. Szemerédi,et al.  Unit distances in the Euclidean plane , 1984 .

[3]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[4]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[5]  Paul Erdös,et al.  Repeated distances in space , 1988, Graphs Comb..

[6]  Bernard Chazelle,et al.  A deterministic view of random sampling and its use in geometry , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[7]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[8]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[9]  I. Reiman Über ein Problem von K. Zarankiewicz , 1958 .

[10]  P. Erdös On Sets of Distances of n Points , 1946 .

[11]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[12]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[13]  R. Canham A theorem on arrangements of lines in the plane , 1969 .

[14]  David P. Dobkin,et al.  Primitives for the manipulation of three-dimensional subdivisions , 1987, SCG '87.

[15]  Richard Pollack,et al.  Proof of Grünbaum's Conjecture on the Stretchability of Certain Arrangements of Pseudolines , 1980, J. Comb. Theory, Ser. A.

[16]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..

[17]  Fan Chung Sphere-and-point incidence relations in high dimensions with applications to unit distances and furthest-neighbor pairs , 1989 .

[18]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[19]  József Beck,et al.  On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry , 1983, Comb..

[20]  Paul Erdös On some problems of elementary and combinatorial geometry , 1975 .

[21]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[22]  Leonidas J. Guibas,et al.  The complexity of many faces in arrangements of lines of segments , 1988, SCG '88.

[23]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[24]  P. Erdös On extremal problems of graphs and generalized graphs , 1964 .

[25]  Endre Szemerédi,et al.  Extremal problems in discrete geometry , 1983, Comb..

[26]  A. Heppes Beweis einer Vermutung von A. Vázsonyi , 1956 .

[27]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[28]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[29]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[30]  Bernard Chazelle,et al.  The power of geometric duality , 1985, BIT Comput. Sci. Sect..

[31]  Leonidas J. Guibas,et al.  Implicitly representing arrangements of lines or segments , 2011, SCG '88.

[32]  H. Edelsbrunner,et al.  On the number of furthest neighbour pairs in a point set , 1989 .

[33]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 1989, J. Comb. Theory A.

[34]  J. Wrench Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .

[35]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[36]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[37]  Paul Erdös,et al.  A problem of Leo Moser about repeated distances on the sphere , 1989 .

[38]  Leonidas J. Guibas,et al.  The complexity of many cells in arrangements of planes and related problems , 1990, Discret. Comput. Geom..

[39]  Leonidas J. Guibas,et al.  The complexity and construction of many faces in arrangements of lines and of segments , 1990, Discret. Comput. Geom..