Novel light and tough ZrB2-based functionally graded ceramics

[1]  G. Hilmas,et al.  Effect of a weak fiber interface coating in ZrB2 reinforced with long SiC fibers , 2015 .

[2]  D. Sciti,et al.  Oxidation behavior and kinetics of ZrB2 containing SiC chopped fibers , 2015 .

[3]  D. Sciti,et al.  Tyranno SA3 fiber–ZrB2 composites. Part I: Microstructure and densification , 2015 .

[4]  D. Sciti,et al.  Oxidation behavior of ZrB2 composites doped with various transition metal silicides , 2014 .

[5]  D. Sciti,et al.  Are short Hi-Nicalon SiC fibers a secondary or a toughening phase for ultra-high temperature ceramics? , 2014 .

[6]  S. Hampshire,et al.  Silicon Nitride—Grain Boundary Oxynitride Glass Interfaces: Deductions From Glass Bulk Properties , 2013 .

[7]  D. Sciti,et al.  SiC chopped fibers reinforced ZrB2: Effect of the sintering aid , 2011 .

[8]  P. Hutař,et al.  Prediction of crack propagation in layered ceramics with strong interfaces , 2010 .

[9]  Zhi Wang,et al.  Oxidation mechanism and resistance of ZrB2–SiC composites , 2009 .

[10]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[11]  Jiecai Han,et al.  A novel functionally graded material in the ZrB2–SiC and ZrO2 system by spark plasma sintering , 2008 .

[12]  Jiecai Han,et al.  A novel development of ZrB2/ZrO2 functionally graded ceramics for ultrahigh-temperature application , 2008 .

[13]  William G. Fahrenholtz,et al.  Thermal shock resistance of ZrB2 and ZrB2–30% SiC , 2008 .

[14]  Raffaele Savino,et al.  Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials , 2008 .

[15]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[16]  A. Sanchez-Herencia,et al.  Threshold strength evaluation on an Al2O3–ZrO2 multilayered system , 2007 .

[17]  William G. Fahrenholtz,et al.  Thermodynamic Analysis of ZrB2–SiC Oxidation: Formation of a SiC‐Depleted Region , 2007 .

[18]  A. Sanchez-Herencia,et al.  Residual stresses, strength and toughness of laminates with different layer thickness ratios , 2006 .

[19]  Erica L. Corral,et al.  Ultra High Temperature Ceramics for Hypersonic Vehicle Applications , 2006 .

[20]  F. Chalvet,et al.  Strength Distributions in Ceramic Laminates , 2005 .

[21]  N. Bansal Handbook of Ceramic Composites , 2005 .

[22]  N. Orlovskaya,et al.  Crack arrest in Si3N4-based layered composites with residual stress , 2004 .

[23]  D. Van Wie,et al.  The hypersonic environment: Required operating conditions and design challenges , 2004 .

[24]  Donald T. Ellerby,et al.  High‐Strength Zirconium Diboride‐Based Ceramics , 2004 .

[25]  J. Rödel,et al.  R-curve behavior in alumina–zirconia composites with repeating graded layers , 2002 .

[26]  Alida Bellosi,et al.  Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride , 2002 .

[27]  J. Kuebler,et al.  High Toughness Ceramic Laminates by Design of Residual Stresses , 2001 .

[28]  A. Bunsell,et al.  Microstructure and thermo‐mechanical stability of a low‐oxygen Nicalon fibre , 1995 .

[29]  H. Okamoto The Si-Zr (Silicon-Zirconium) system , 1990 .

[30]  D. Munz,et al.  Fracture toughness calculation from maximum load in four point bend tests of chevron notch specimens , 1980 .

[31]  C. Donaldson An experimental investigation of olivine morphology , 1976 .

[32]  H. Mulfinger Physical and Chemical Solubility of Nitrogen in Glass Melts , 1966 .