Information leakage resistant quantum dialogue against collective noise

In this paper, two information leakage resistant quantum dialogue (QD) protocols over a collective-noise channel are proposed. Decoherence-free subspace (DFS) is used to erase the influence from two kinds of collective noise, i.e., collective-dephasing noise and collective-rotation noise, where each logical qubit is composed of two physical qubits and free from noise. In each of the two proposed protocols, the secret messages are encoded on the initial logical qubits via two composite unitary operations. Moreover, the single-photon measurements rather than the Bell-state measurements or the more complicated measurements are needed for decoding, making the two proposed protocols easier to implement. The initial state of each logical qubit is privately shared between the two authenticated users through the direct transmission of its auxiliary counterpart. Consequently, the information leakage problem is avoided in the two proposed protocols. Moreover, the detailed security analysis also shows that Eve’s several famous active attacks can be effectively overcome, such as the Trojan horse attack, the intercept-resend attack, the measure-resend attack, the entangle-measure attack and the correlation-elicitation (CE) attack.

[1]  Tian-Yu Ye,et al.  Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state , 2022, 2205.01877.

[2]  Wen Qiao-Yan,et al.  Quasi-secure quantum dialogue using single photons , 2007 .

[3]  Su-Juan Qin,et al.  Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state , 2010 .

[4]  Tian-Yin Wang,et al.  CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM ENCRYPTION , 2008 .

[5]  张寿,et al.  Secure quantum dialogue based on single-photon , 2006 .

[6]  LI Chun-Yan,et al.  Efficient quantum secure communication with a publicly known key , 2008 .

[7]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[8]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[9]  Cai Qing-yu,et al.  Deterministic secure communication without using entanglement , 2004 .

[10]  Tian-Yu Ye,et al.  Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State , 2013 .

[11]  Guo-Fang Shi,et al.  Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles , 2010 .

[12]  Shi-ning Zhu,et al.  Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement , 2011 .

[13]  Guo-Fang Shi,et al.  Bidirectional quantum secure communication based on a shared private Bell state , 2009 .

[14]  Bin Gu,et al.  Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel , 2011 .

[15]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[16]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[17]  Tang-Kun Liu,et al.  BIDIRECTIONAL QUANTUM SECURE DIRECT COMMUNICATION IN DRIVEN CAVITY QED , 2009 .

[18]  Dongyang Long,et al.  Quantum Secure Direct Communication with Two-Photon Four-Qubit Cluster States , 2012 .

[19]  周萍,et al.  Quantum secure direct communication with quantum encryption based on pure entangled states , 2007 .

[20]  周萍,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[21]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[22]  Kun Zhong,et al.  Deterministic secure quantum communication over a collective-noise channel , 2009 .

[23]  Wen Qiao-Yan,et al.  A Special Eavesdropping on One-Sender Versus N-Receiver QSDC Protocol , 2008 .

[24]  Qiaoyan Wen,et al.  Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174] , 2007 .

[25]  Nguyen Ba An Quantum exam , 2006 .

[26]  Zhang Zhan-jun,et al.  Quantum dialogue revisited , 2005 .

[27]  Su-Juan Qin,et al.  Comment on: “Three-party quantum secure direct communication based on GHZ states” [Phys. Lett. A 354 (2006) 67] , 2008 .

[28]  Gan Gao,et al.  Two quantum dialogue protocols without information leakage , 2010 .

[29]  Gang Xu,et al.  CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH W STATE , 2008 .

[30]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[31]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[32]  Erratum to “Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state” [Opt. Commun. 253 (2005) 15–20] , 2006 .

[33]  Man Zhong-xiao,et al.  Controlled Bidirectional Quantum Direct Communication by Using a GHZ State , 2006 .

[34]  Tao Li,et al.  High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement , 2011 .

[35]  Man Zhong-Xiao,et al.  Improvement of Security of Three-Party Quantum Secure Direct Communication Based on GHZ States , 2007 .

[36]  Qiao-Yan Wen,et al.  Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication , 2008 .

[37]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[38]  Qing-yu Cai,et al.  Classical correlation in quantum dialogue , 2008, 0802.0358.

[39]  Xin Ji,et al.  Three-party quantum secure direct communication based on GHZ states , 2006, quant-ph/0601125.

[40]  Chen Yu-lin,et al.  Bidirectional Quantum Secure Direct Communication Network Protocol with Hyperentanglement , 2011 .

[41]  Chun-Wei Yang,et al.  Quantum dialogue protocols immune to collective noise , 2013, Quantum Inf. Process..

[42]  Z. Man,et al.  Secure direct bidirectional communication protocol using the Einstein-Podolsky-Rosen pair block , 2004, quant-ph/0403215.

[43]  Kaoru Shimizu,et al.  Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair , 2009 .

[44]  N. An,et al.  Quantum secure direct communication by using GHZ states and entanglement swapping , 2006 .

[45]  Su-Juan Qin,et al.  An external attack on the Brádler–Dušek protocol , 2007 .

[46]  Tian-Yu Ye,et al.  LARGE PAYLOAD BIDIRECTIONAL QUANTUM SECURE DIRECT COMMUNICATION WITHOUT INFORMATION LEAKAGE , 2013, 2205.02395.

[47]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[48]  Yan Wang,et al.  Secure quantum key distribution network with Bell states and local unitary operations , 2007, 0705.1746.

[49]  Tian-Yu Ye,et al.  Reply to the Comment on “Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State" [Chin. Phys. Lett. 30 (2013) 040305] , 2013 .

[50]  Gan Gao,et al.  Quantum Secure Direct Communication by Swapping Entanglements of 3×3-Dimensional Bell States , 2011 .

[51]  Deng Fu-Guo,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[52]  Wei Jiang,et al.  High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom , 2012 .

[53]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[54]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[55]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[56]  Fu-Guo Deng,et al.  Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems , 2013, 1302.0045.

[57]  Qing-yu Cai,et al.  Deterministic secure communication protocol without using entanglement , 2003 .

[58]  Man Zhong-xiao,et al.  Quantum Bidirectional Secure Direct Communication via Entanglement Swapping , 2007 .

[59]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[60]  Yu-Bo Sheng,et al.  Fault tolerant quantum key distribution based on quantum dense coding with collective noise , 2009, 0904.0056.

[61]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[62]  Su-Juan Qin,et al.  Cryptanalysis and improvement of a secure quantum sealed-bid auction , 2009 .

[63]  Chia-Wei Tsai,et al.  Deterministic quantum communication using the symmetric W state , 2013 .

[64]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[65]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[66]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[67]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[68]  Gu Bin,et al.  A two-step quantum secure direct communication protocol with hyperentanglement , 2011 .

[69]  Zhan-jun Zhang Robust multiparty quantum secret key sharing over two collective-noise channels , 2006 .

[70]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[71]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[72]  Ming-Liang Hu,et al.  Quantum secure dialogue by using single photons , 2010 .

[73]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[74]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[75]  Su-Juan Qin,et al.  Comment on 'Two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair' , 2010 .

[76]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[77]  Nguyen Ba An Quantum dialogue , 2004 .