Physical properties of giant molecular clouds in the Large Magellanic Cloud

The Magellanic Mopra Assessment (MAGMA) is a high angular resolution ^(12)CO (J = 1 → 0) mapping survey of giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud using the Mopra Telescope. Here we report on the basic physical properties of 125 GMCs in the LMC that have been surveyed to date. The observed clouds exhibit scaling relations that are similar to those determined for Galactic GMCs, although LMC clouds have narrower linewidths and lower CO luminosities than Galactic clouds of a similar size. The average mass surface density of the LMC clouds is 50 M_⊙ pc^(−2), approximately half that of GMCs in the inner Milky Way. We compare the properties of GMCs with and without signs of massive star formation, finding that non-star-forming GMCs have lower peak CO brightness than star-forming GMCs. We compare the properties of GMCs with estimates for local interstellar conditions: specifically, we investigate the H i column density, radiation field, stellar mass surface density and the external pressure. Very few cloud properties demonstrate a clear dependence on the environment; the exceptions are significant positive correlations between (i) the H i column density and the GMC velocity dispersion, (ii) the stellar mass surface density and the average peak CO brightness and (iii) the stellar mass surface density and the CO surface brightness. The molecular mass surface density of GMCs without signs of massive star formation shows no dependence on the local radiation field, which is inconsistent with the photoionization-regulated star formation theory proposed by McKee. We find some evidence that the mass surface density of the MAGMA clouds increases with the interstellar pressure, as proposed by Elmegreen, but the detailed predictions of this model are not fulfilled once estimates for the local radiation field, metallicity and GMC envelope mass are taken into account.

[1]  J. Ott,et al.  CHARACTERIZING THE LOW-MASS MOLECULAR COMPONENT IN THE NORTHERN SMALL MAGELLANIC CLOUD , 2010, 1001.4757.

[2]  The University of Texas at Austin,et al.  THE SPATIALLY RESOLVED STAR FORMATION LAW FROM INTEGRAL FIELD SPECTROSCOPY: VIRUS-P OBSERVATIONS OF NGC 5194 , 2009, 0908.2810.

[3]  A. Kawamura,et al.  THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION , 2009, 0908.1168.

[4]  T. Wong,et al.  THE INFLUENCE OF FAR-ULTRAVIOLET RADIATION ON THE PROPERTIES OF MOLECULAR CLOUDS IN THE 30 DOR REGION OF THE LARGE MAGELLANIC CLOUD , 2009, 0907.5186.

[5]  A. Bolatto,et al.  THE STRUCTURE OF A LOW-METALLICITY GIANT MOLECULAR CLOUD COMPLEX , 2009, 0907.2240.

[6]  R. Indebetouw,et al.  SPATIAL VARIATIONS OF DUST ABUNDANCES ACROSS THE LARGE MAGELLANIC CLOUD , 2009, 0905.4297.

[7]  C. McKee,et al.  THE STAR FORMATION LAW IN ATOMIC AND MOLECULAR GAS , 2009, 0904.0009.

[8]  J. Ott,et al.  MOLECULAR AND ATOMIC GAS IN THE LARGE MAGELLANIC CLOUD. I. CONDITIONS FOR CO DETECTION , 2009, 0902.1578.

[9]  E. Tasker,et al.  STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS , 2008, 0811.0207.

[10]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[11]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[12]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[13]  W. Reach,et al.  Extinction and dust/gas ratio in LMC molecular clouds , 2008 .

[14]  Adam K. Leroy,et al.  The Resolved Properties of Extragalactic Giant Molecular Clouds , 2008, Proceedings of the International Astronomical Union.

[15]  J. Ott,et al.  The Molecular Ridge Close to 30 Doradus in the Large Magellanic Cloud , 2008, Publications of the Astronomical Society of Australia.

[16]  U. Chile,et al.  The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. I. Catalog of Molecular Clouds , 2008, 0804.1458.

[17]  H. Yamamoto,et al.  Submillimeter line emission from LMC N159W: a dense, clumpy PDR in a low metallicity environment , 2008, 0802.1929.

[18]  G. Garay,et al.  Submillimeter Observations of Giant Molecular Clouds in the Large Magellanic Cloud: Temperature and Density as Determined from J = 3-2 and J = 1-0 Transitions of CO , 2007, 0710.4202.

[19]  R. Gruendl,et al.  Large-Scale Gravitational Instability and Star Formation in the Large Magellanic Cloud , 2007, 0708.3243.

[20]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[21]  E. Rosolowsky Giant Molecular Clouds in M31. I. Molecular Cloud Properties , 2006, astro-ph/0609421.

[22]  K. Keil,et al.  Protostars and Planets V , 2007 .

[23]  A. Bolatto,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SPITZER SURVEY OF THE SMALL MAGELLANIC CLOUD: FIR EMISSION AND COLD GAS IN THE SMC , 2006 .

[24]  L. Hartmann,et al.  Remarks on rapid vs. slow star formation , 2006, astro-ph/0605268.

[25]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation II: The H2-Pressure Relation , 2006, astro-ph/0605035.

[26]  Norikazu Mizuno,et al.  Giant Molecular Clouds in Local Group Galaxies , 2006 .

[27]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[28]  Erik Rosolowsky,et al.  Bias‐free Measurement of Giant Molecular Cloud Properties , 2006, astro-ph/0601706.

[29]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[30]  Christopher F. McKee,et al.  A General Theory of Turbulence-regulated Star Formation, from Spirals to Ultraluminous Infrared Galaxies , 2005, astro-ph/0505177.

[31]  Peter Boyle,et al.  Origin and Evolution , 2005 .

[32]  T. Wong,et al.  Beam Size, Shape and Efficiencies for the ATNF Mopra Radio Telescope at 86–115 GHz , 2005, Publications of the Astronomical Society of Australia.

[33]  E. Rosolowsky,et al.  Giant Molecular Clouds in M64 , 2005, astro-ph/0501387.

[34]  G. Lagache,et al.  IRIS: A New Generation of IRAS Maps , 2004, astro-ph/0412216.

[35]  J. Lequeux The Interstellar Medium , 2004 .

[36]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[37]  E. Rosolowsky,et al.  The Role of Pressure in Giant Molecular Cloud Formation , 2004 .

[38]  John C. Raymond,et al.  Molecular Cloud Formation behind Shock Waves , 2004, astro-ph/0405329.

[39]  A. Drake,et al.  Geometry of the Large Magellanic Cloud Disk: Results from MACHO and the Two Micron All Sky Survey , 2004 .

[40]  D. Alves,et al.  A review of the distance and structure of the Large Magellanic Cloud , 2003, astro-ph/0310673.

[41]  E. Tolstoy,et al.  Abundance Patterns of the Large Magellanic Cloud Disk and Bar , 2004 .

[42]  M. Dopita,et al.  A Neutral Hydrogen Survey of the Large Magellanic Cloud: Aperture Synthesis and Multibeam Data Combined , 2003, astro-ph/0506224.

[43]  E. Rosolowsky,et al.  Giant Molecular Clouds in M33. II. High-Resolution Observations , 2003, astro-ph/0307322.

[44]  A. Bolatto,et al.  Unusual CO Line Ratios and Kinematics in the N83/N84 Region of the Small Magellanic Cloud , 2003, astro-ph/0306144.

[45]  G. Garay,et al.  Results of the ESO-SEST Key Programme on CO in the Magellanic Clouds - IX. The giant LMC HII region complex N 11 , 2002, astro-ph/0211450.

[46]  R. Haynes,et al.  A new look at the large-scale H I structure of the Large Magellanic Cloud , 2002, astro-ph/0210501.

[47]  G. Garay,et al.  Results of the SEST Key Programme: CO in the Magellanic Clouds VIII. The giant molecular complex No. 37 of the LMC ? , 2002 .

[48]  N. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002, astro-ph/0205161.

[49]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[50]  L. Blitz,et al.  The Relationship between Gas Content and Star Formation in Molecule-rich Spiral Galaxies , 2001, astro-ph/0112204.

[51]  M. Rubio,et al.  A CO Survey of the LMC with NANTEN: II. Catalog of Molecular Clouds , 2001 .

[52]  D. Van Buren,et al.  A Robotic Wide‐Angle Hα Survey of the Southern Sky , 2001, astro-ph/0108518.

[53]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[54]  Tetsuo Hasegawa,et al.  The CO J = 2-1 / J = 1-0 Ratio in the Large Magellanic Cloud , 2001 .

[55]  J. Carpenter,et al.  The Equilibrium State of Molecular Regions in the Outer Galaxy , 2001, astro-ph/0101133.

[56]  N. Evans,et al.  The So-called “Bar” in the Large Magellanic Cloud , 2000, astro-ph/0009155.

[57]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[58]  M. Weinberg,et al.  Stellar Populations in the Large Magellanic Cloud from 2MASS , 2000, astro-ph/0003012.

[59]  Atsunori Yonehara,et al.  Publications of the Astronomical Society of Australia , 2000 .

[60]  M. Dopita,et al.  An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud , 1998 .

[61]  Jonathan P. Williams,et al.  A Multitransition CO and CS (2-1) Comparison of a Star-forming and a Non-Star-forming Giant Molecular Cloud , 1998 .

[62]  G. Garay,et al.  Results of the ESO-SEST key programme: CO in the Magellanic Clouds - VI. The 30 Dor Complex , 1997 .

[63]  A. Poglitsch,et al.  C + Emission from the Magellanic Clouds. I. The Bright H II Region Complexes N159 and N160 , 1996 .

[64]  Matthew A. Bershady,et al.  Linear Regression for Astronomical Data with Measurement Errors and Intrinsic Scatter , 1996, astro-ph/9605002.

[65]  Leo Blitz,et al.  DETERMINING STRUCTURE IN MOLECULAR CLOUDS , 1994 .

[66]  A. Tielens,et al.  CO(J = 1-0) line emission from giant molecular clouds , 1993 .

[67]  J. Lunine,et al.  Protostars and planets III , 1993 .

[68]  Chris Biemesderfer,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[69]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[70]  C. McKee Photoionization-regulated Star Formation and the Structure of Molecular Clouds , 1989 .

[71]  B. Elmegreen Molecular cloud formation by gravitational instabilities in a clumpy interstellar medium , 1989 .

[72]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[73]  A. Wolfendale,et al.  Corrections to virial estimates of molecular cloud masses , 1988 .

[74]  R. Fleck The mechanical equilibrium of interstellar clouds: scaling relations for gas density, line width, and magnetic field strength , 1988 .

[75]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[76]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[77]  F. Schloerb,et al.  Carbon monoxide as an extragalactic mass tracer , 1986 .

[78]  R. L. Brown The interstellar medium. , 1982, Science.

[79]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[80]  R. Larson Stellar kinematics and interstellar turbulence , 1979 .

[81]  S. Federman,et al.  Atomic to molecular hydrogen transition in interstellar clouds , 1979 .