An Integrated Framework for Empirical Discovery

In this article we present a framework that integrates three aspects of empirical discovery—the formation of taxonomies, the generation of qualitative laws, and the detection of numeric relations. We specify a control structure that integrates these component processes, embedding qualitative discovery within taxonomy formation, and embedding numeric discovery within both of these activities. We also describe the framework's basic representation and organization of knowledge, which combines elements from recent work in machine discovery and qualitative physics. In addition, we describe IDS, a running system that instantiates this framework, and report its behavior on problems from the history of science. Finally, we discuss some limitations of the system as revealed by experimental studies, and propose some directions for future research.

[1]  Douglas B. Lenat,et al.  The ubiquity of discovery , 1993, AFIPS National Computer Conference.

[2]  Claus-Rainer Rollinger,et al.  The Discovery of the Equator or Concept Driven Learning , 1983, IJCAI.

[3]  H. Simon,et al.  Rediscovering Chemistry with the Bacon System , 1983 .

[4]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[5]  Benjamin Kuipers,et al.  Commonsense Reasoning about Causality: Deriving Behavior from Structure , 1984, Artif. Intell..

[6]  Brian C. Williams,et al.  Qualitative Analysis of MOS Circuits , 1984, Artif. Intell..

[7]  Mark A. Gluck,et al.  Information, Uncertainty and the Utility of Categories , 1985 .

[8]  Kenneth D. Forbus,et al.  Learning Physical Domains: Toward a Theoretical Framework. , 1986 .

[9]  Bernhard Nordhausen,et al.  Conceptual Clustering Using Relational Information , 1986, AAAI.

[10]  Randy Jones,et al.  Generating Predictions to Aid the Scientific Discovery Process , 1986, AAAI.

[11]  Michael Lebowitz,et al.  Experiments with incremental concept formation: UNIMEM , 2004, Machine Learning.

[12]  Jan M. Zytkow,et al.  Combining many searches in the FAHRENHEIT discovery system , 1987 .

[13]  Pat Langley,et al.  A computational framework for empirical discovery , 1989 .

[14]  Kenneth D. Forbus Qualitative Process Theory , 1984, Artificial Intelligence.

[15]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[16]  Herbert A. Simon,et al.  Experimentation in machine discovery , 1990 .

[17]  Patrick J. Hayes,et al.  The Naive Physics Manifesto , 1990, The Philosophy of Artificial Intelligence.

[18]  Pat Langley,et al.  A Robust Approach to Numeric Discovery , 1990, ML.

[19]  Jieming Zhu,et al.  Automated Discovery in a Chemistry Laboratory , 1990, AAAI.

[20]  Dennis DeCoste,et al.  Dynamic Across-Time Measurement Interpretation , 1990, Artif. Intell..

[21]  Brian Falkenhainer,et al.  Integrating quantitative and qualitative discovery: The ABACUS system , 2004, Machine Learning.

[22]  Ryszard S. Michalski,et al.  Integrating Quantitative and Qualitative Discovery: The ABACUS System , 1990, Machine Learning.

[23]  Pat Langley,et al.  Chemical Discovery as Belief Revision , 1986, Machine Learning.

[24]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.