Property testing of planarity in the CONGEST model

We give a distributed algorithm in the CONGEST model for property testing of planarity with one-sided error in general (unbounded-degree) graphs. Following Censor-Hillel et al. (Proceedings of the 30th International Symposium on Distributed Computing, pp. 43–56, 2016), who recently initiated the study of property testing in the distributed setting, our algorithm gives the following guarantee: For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} and a distance parameter ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, if G is planar, then every node outputs accept, and if G is ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-far from being planar (i.e., more than ϵ·|E|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \cdot |E|$$\end{document} edges need to be removed in order to make G planar), then with probability 1-1/poly(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/\mathrm{poly}(n)$$\end{document} at least one node outputs reject. The algorithm runs in O(log|V|·poly(1/ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log |V|\cdot \mathrm{poly}(1/\epsilon ))$$\end{document} rounds, and we show that this result is tight in terms of the dependence on |V|. Our algorithm combines several techniques of graph partitioning and local verification of planar embeddings. Furthermore, we show how a main subroutine in our algorithm can be applied to derive additional results for property testing of cycle-freeness and bipartiteness, as well as the construction of spanners, in minor-free (unweighted) graphs.

[1]  Reut Levi,et al.  On Testing Minor-Freeness in Bounded Degree Graphs With One-Sided Error , 2017, ICALP.

[2]  Merav Parter,et al.  Near-Optimal Distributed DFS in Planar Graphs , 2017, DISC.

[3]  Krzysztof Onak,et al.  Planar Graphs: Random Walks and Bipartiteness Testing , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[4]  Dana Ron,et al.  Finding cycles and trees in sublinear time , 2010, Random Struct. Algorithms.

[5]  Akash Kumar,et al.  Finding Forbidden Minors in Sublinear Time: A n^1/2+o(1)-Query One-Sided Tester for Minor Closed Properties on Bounded Degree Graphs , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[6]  Dana Ron,et al.  Property testing of planarity in the CONGEST model , 2018, Distributed Computing.

[7]  Pierre Fraigniaud,et al.  Distributed Subgraph Detection , 2017, ArXiv.

[8]  Rotem Oshman,et al.  On the Multiparty Communication Complexity of Testing Triangle-Freeness , 2017, PODC.

[9]  Pierre Fraigniaud,et al.  Distributed Detection of Cycles , 2017, SPAA.

[10]  David A. Bader,et al.  Graph Algorithms , 2011, Encyclopedia of Parallel Computing.

[11]  Boaz Patt-Shamir,et al.  Distributed discovery of large near-cliques , 2009, PODC '09.

[12]  Moti Medina,et al.  Three Notes on Distributed Property Testing , 2017, DISC.

[13]  Bernhard Haeupler,et al.  Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs , 2016, DISC.

[14]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[15]  Christoph Lenzen,et al.  Minimum Dominating Set Approximation in Graphs of Bounded Arboricity , 2010, DISC.

[16]  Yuichi Yoshida,et al.  Testing Outerplanarity of Bounded Degree Graphs , 2014, Algorithmica.

[17]  Oded Schramm,et al.  Every minor-closed property of sparse graphs is testable , 2008, Electron. Colloquium Comput. Complex..

[18]  Richard Cole,et al.  Deterministic Coin Tossing with Applications to Optimal Parallel List Ranking , 2018, Inf. Control..

[19]  Shimon Even,et al.  Graph Algorithms: Contents , 2011 .

[20]  Dana Ron,et al.  Testing Bounded Arboricity , 2017, SODA.

[21]  Rotem Oshman,et al.  Distributed Property Testing for Subgraph-Freeness Revisited , 2017, ArXiv.

[22]  Boaz Patt-Shamir,et al.  Distributed discovery of large near-cliques , 2011, Distributed Computing.

[23]  Michael Elkin,et al.  Efficient Algorithms for Constructing Very Sparse Spanners and Emulators , 2016, SODA.

[24]  Ivan Rapaport,et al.  Distributed Testing of Excluded Subgraphs , 2016, DISC.

[25]  Krzysztof Onak,et al.  Local Graph Partitions for Approximation and Testing , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Bernhard Haeupler,et al.  Distributed Algorithms for Planar Networks II: Low-Congestion Shortcuts, MST, and Min-Cut , 2016, SODA.

[27]  Yadu Vasudev,et al.  A Two-Sided Error Distributed Property Tester For Conductance , 2018, MFCS.

[28]  Bernhard Haeupler,et al.  Distributed Algorithms for Planar Networks I: Planar Embedding , 2016, PODC.

[29]  Dana Ron,et al.  A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor , 2013, ICALP.

[30]  Akash Kumar,et al.  Random walks and forbidden minors II: a poly(d ε-1)-query tester for minor-closed properties of bounded degree graphs , 2019, STOC.

[31]  Christoph Lenzen,et al.  Distributed minimum dominating set approximations in restricted families of graphs , 2013, Distributed Computing.

[32]  Moti Medina,et al.  Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST-Model , 2017, ArXiv.

[33]  Bernhard Haeupler,et al.  Low-Congestion shortcuts without embedding , 2016, Distributed Computing.

[34]  Stefan Schmid,et al.  A Local Constant Factor MDS Approximation for Bounded Genus Graphs , 2016, PODC.

[35]  Fred B. Chambers,et al.  Distributed Computing , 2016, Lecture Notes in Computer Science.

[36]  Andrew V. Goldberg,et al.  Parallel Symmetry-Breaking in Sparse Graphs , 1988, SIAM J. Discret. Math..

[37]  Mohsen Ghaffari,et al.  Simple and Near-Optimal Distributed Coloring for Sparse Graphs , 2017, DISC.

[38]  Nathan Linial,et al.  Locality in Distributed Graph Algorithms , 1992, SIAM J. Comput..

[39]  Eldar Fischer,et al.  Fast distributed algorithms for testing graph properties , 2016, Distributed Computing.

[40]  Andrzej Czygrinow,et al.  Fast Distributed Approximations in Planar Graphs , 2008, DISC.

[41]  Bernhard Haeupler,et al.  Minor Excluded Network Families Admit Fast Distributed Algorithms , 2018, PODC.