HMD-ARG: hierarchical multi-task deep learning for annotating antibiotic resistance genes

[1]  Sheng Wang,et al.  DeepSimulator1.5: a more powerful, quicker and lighter simulator for Nanopore sequencing , 2020, Bioinform..

[2]  Junwei Han,et al.  psSubpathway: a software package for flexible identification of phenotype-specific subpathways in cancer progression , 2019, Bioinform..

[3]  Christina Boucher,et al.  MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data , 2019, Nucleic Acids Res..

[4]  Renmin Han,et al.  A novel constrained reconstruction model towards high-resolution subtomogram averaging , 2019, Bioinform..

[5]  R. Kishony,et al.  Transient antibiotic resistance calls for attention , 2019, Nature Microbiology.

[6]  Shaohua Zhao,et al.  Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates , 2019, Antimicrobial Agents and Chemotherapy.

[7]  Martin D. Muggli,et al.  Hierarchical Hidden Markov models enable accurate and diverse detection of antimicrobial resistance sequences , 2019, Communications Biology.

[8]  George M. Church,et al.  Unified rational protein engineering with sequence-only deep representation learning , 2019, bioRxiv.

[9]  G. Dantas,et al.  Sequencing-based methods and resources to study antimicrobial resistance , 2019, Nature Reviews Genetics.

[10]  Renmin Han,et al.  Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing , 2018, bioRxiv.

[11]  Yizhou Yu,et al.  WaveNano: a signal-level nanopore base-caller via simultaneous prediction of nucleotide labels and move labels through bi-directional WaveNets , 2018, Quantitative Biology.

[12]  Malbert R. C. Rogers,et al.  University of Birmingham Prediction of the intestinal resistome by a three-dimensional structure-based method , 2018 .

[13]  Adam J. Riesselman,et al.  Deep generative models of genetic variation capture the effects of mutations , 2018, Nature Methods.

[14]  Q. Shen,et al.  Antibiotics and antibiotic resistance from animal manures to soil: a review , 2018 .

[15]  Hamid D. Ismail,et al.  CNN-BLPred: a Convolutional neural network based predictor for β-Lactamases (BL) and their classes , 2017, BMC Bioinformatics.

[16]  Renmin Han,et al.  DeepSimulator: a deep simulator for Nanopore sequencing , 2017, bioRxiv.

[17]  Lihua Li,et al.  DEEPre: sequence-based enzyme EC number prediction by deep learning , 2017, Bioinform..

[18]  Qingxiang Yang,et al.  Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. , 2017, The Science of the total environment.

[19]  A. Karkman,et al.  Antibiotic-Resistance Genes in Waste Water. , 2017, Trends in microbiology.

[20]  Lenwood S. Heath,et al.  DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data , 2017, bioRxiv.

[21]  Pascal Retailleau,et al.  Beta-lactamase database (BLDB) – structure and function , 2017, Journal of enzyme inhibition and medicinal chemistry.

[22]  Christina Boucher,et al.  MEGARes: an antimicrobial resistance database for high throughput sequencing , 2016, Nucleic Acids Res..

[23]  S. Essack,et al.  Antibiotic Resistance in the Food Chain: A Developing Country-Perspective , 2016, Front. Microbiol..

[24]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[25]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[26]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[27]  Molly K. Gibson,et al.  Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology , 2014, The ISME Journal.

[28]  Sanket Patel,et al.  Pediatric Fecal Microbiota Harbor Diverse and Novel Antibiotic Resistance Genes , 2013, PloS one.

[29]  J. Rolain,et al.  ARG-ANNOT, a New Bioinformatic Tool To Discover Antibiotic Resistance Genes in Bacterial Genomes , 2013, Antimicrobial Agents and Chemotherapy.

[30]  Gerard D. Wright,et al.  Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. , 2013, International journal of medical microbiology : IJMM.

[31]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[32]  S. Rasmussen,et al.  Identification of acquired antimicrobial resistance genes , 2012, The Journal of antimicrobial chemotherapy.

[33]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[34]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[35]  R. Jensen,et al.  Genomic Comparison between a Virulent Type A1 Strain of Francisella tularensis and Its Attenuated O-Antigen Mutant , 2012, Journal of bacteriology.

[36]  Peter Mullany,et al.  Acquired Antibiotic Resistance Genes: An Overview , 2011, Front. Microbio..

[37]  Heather K. Allen,et al.  Call of the wild: antibiotic resistance genes in natural environments , 2010, Nature Reviews Microbiology.

[38]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[39]  Harpreet Singh,et al.  Identification of group specific motifs in Beta-lactamase family of proteins , 2009, Journal of Biomedical Science.

[40]  G. Church,et al.  Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora , 2009, Science.

[41]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[42]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[43]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[44]  Saurabh Sinha,et al.  On counting position weight matrix matches in a sequence, with application to discriminative motif finding , 2006, ISMB.

[45]  Barry G. Hall,et al.  Revised Ambler classification of β-lactamases , 2005 .

[46]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[47]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[48]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[49]  San José,et al.  Final Report and Recommendations , 1971, PS: Political Science & Politics.