Generalized Kernel Estimators for the Weibull-Tail Coefficient
暂无分享,去创建一个
[1] J. Diebolt,et al. Bias-reduced estimators of the Weibull tail-coefficient , 2008, 1103.6172.
[2] Laurent Gardes,et al. Comparison of Weibull tail-coefficient estimators , 2011, 1104.0764.
[3] M. Broniatowski. On the estimation of the Weibull tail coefficient , 1993 .
[4] A. Rényi. On the theory of order statistics , 1953 .
[5] Laurent Gardes,et al. Estimating Extreme Quantiles of Weibull Tail Distributions , 2005 .
[6] M. Meerschaert. Regular Variation in R k , 1988 .
[7] S. Girard. A Hill Type Estimator of the Weibull Tail-Coefficient , 2004 .
[8] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[9] Joseph L. Gastwirth,et al. Asymptotic Distribution of Linear Combinations of Functions of Order Statistics with Applications to Estimation , 1967 .
[10] Laurent Gardes,et al. Estimation of the Weibull tail-coefficient with linear combination of upper order statistics , 2008, 1103.5894.
[11] Cécile Mercadier,et al. Semi-parametric estimation for heavy tailed distributions , 2010 .
[12] Armelle Guillou,et al. Goodness-of-fit testing for Weibull-type behavior , 2010 .
[13] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[14] D. Mason. Asymptotic Normality of Linear Combinations of Order Statistics with a Smooth Score Function , 1981 .
[15] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[16] J. Teugels,et al. The mean residual life function at great age: Applications to tail estimation , 1995 .
[17] David J. Edwards,et al. Mean Residual Life , 2011, International Encyclopedia of Statistical Science.