Application of a Mickens finite‐difference scheme to the cylindrical Bratu‐Gelfand problem
暂无分享,去创建一个
[1] R. Mickens. Applications of nonstandard finite difference schemes , 2000 .
[2] S. Howison,et al. Applied Partial Differential Equations , 1999 .
[3] G. Bratu. Sur les équations intégrales non linéaires , 1913 .
[4] Kazimierz Wanelik,et al. On the iterative solutions of some nonlinear eigenvalue problems , 1989 .
[5] W. Mccrea. An Introduction to the Study of Stellar Structure , 1939, Nature.
[6] Michael R. Osborne,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[7] O. Hougen. Diffusion and Heat Exchange in Chemical Kinetics. , 1956 .
[8] Ron Buckmire,et al. Investigations of nonstandard, Mickens‐type, finite‐difference schemes for singular boundary value problems in cylindrical or spherical coordinates , 2003 .
[9] R. Mickens. Lie methods in mathematical modelling: Difference equation models of differential equations , 1988 .
[10] J. Abbott. An e cient algorithm for the determination of certain bifurcation points , 1978 .
[11] Ronald E. Mickens,et al. Finite-difference models of ordinary differential equations: influence of denominator functions , 1990 .
[12] R. Mickens. Nonstandard Finite Difference Models of Differential Equations , 1993 .
[13] Exact solutions to difference equation models of Burgers' equation , 1986 .
[14] R. Buckmire. ON THE DESIGN OF SHOCK-FREE, TRANSONIC, SLENDER BODIES OF REVOLUTION , 1998 .
[15] K. Schmitt,et al. The Liouville–Bratu–Gelfand Problem for Radial Operators , 2002 .
[16] Ronald E. Mickens,et al. Nonstandard Finite Difference Schemes for Differential Equations , 2002 .