Non-density in punctual computability
暂无分享,去创建一个
[1] M. Rabin. Computable algebra, general theory and theory of computable fields. , 1960 .
[2] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[3] A. G. Melnikov,et al. The Diversity of Categoricity Without Delay , 2017 .
[4] Denis R. Hirschfeldt. Degree spectra of intrinsically c.e. relations , 2001, Journal of Symbolic Logic.
[5] Hal A. Kierstead,et al. On-Line Coloring and Recursive Graph Theory , 1994, SIAM J. Discret. Math..
[6] Serge Grigorieff,et al. Every recursive linear ordering has a copy in DTIME-SPACE(n,log(n)) , 1990, Journal of Symbolic Logic.
[7] Keng Meng Ng,et al. The back-and-forth method and computability without delay , 2019, Israel Journal of Mathematics.
[8] Matthew Harrison-Trainor,et al. AUTOMATIC AND POLYNOMIAL-TIME ALGEBRAIC STRUCTURES , 2019, The Journal of Symbolic Logic.
[9] Keng Meng Ng,et al. Online presentations of finitely generated structures , 2020, Theor. Comput. Sci..
[10] N. S. Romanovskii,et al. Nilpotent groups of finite algorithmic dimension , 1989 .
[11] Douglas A. Cenzer,et al. Space complexity of Abelian groups , 2009, Arch. Math. Log..
[12] PUNCTUAL CATEGORICITY AND UNIVERSALITY , 2020, The Journal of Symbolic Logic.
[13] Charles F. D. McCoy. Finite computable dimension does not relativize , 2002, Arch. Math. Log..
[14] P. E. Alaev,et al. Structures Computable in Polynomial Time. I , 2017 .
[15] Iskander Sh. Kalimullin,et al. FOUNDATIONS OF ONLINE STRUCTURE THEORY , 2019, The Bulletin of Symbolic Logic.
[16] S. S. Goncharov,et al. Problem of the number of non-self-equivalent constructivizations , 1980 .
[17] Douglas A. Cenzer,et al. Polynomial-Time Abelian Groups , 1992, Ann. Pure Appl. Log..
[18] Anil Nerode,et al. Open Questions in the Theory of Automatic Structures , 2008, Bull. EATCS.
[19] Keng Meng Ng,et al. Algebraic structures computable without delay , 2017, Theor. Comput. Sci..
[20] Douglas Cenzer,et al. Complexity Theoretic Model Theory and Algebra , 2013 .
[21] Arkadii M. Slinko,et al. Degree spectra and computable dimensions in algebraic structures , 2002, Ann. Pure Appl. Log..
[22] K. M. Ng,et al. A structure of punctual dimension two , 2020 .
[23] Steffen Lempp,et al. The computable dimension of ordered abelian groups , 2003 .
[24] A. I. Mal'tsev. CONSTRUCTIVE ALGEBRAS I , 1961 .