Enridged contour maps

The visualization of scalar functions of two variables is a classic and ubiquitous application. We present a new method to visualize such data. The method is based on a nonlinear mapping of the function to a height field, followed by visualization as a shaded mountain landscape. The method is easy to implement and efficient, and leads to intriguing and insightful images: The visualization is enriched by adding ridges. Three types of applications are discussed: visualization of iso-levels, clusters (multivariate data visualization), and dense contours (flow visualization).

[1]  Jarke J. van Wijk A Raster Graphics Approach to Flow Visualization , 1990, Eurographics.

[2]  Alexandru Telea,et al.  Visualization of Generalized Voronoi Diagrams , 2001, VisSym.

[3]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[4]  Takafumi Saito,et al.  Comprehensible rendering of 3-D shapes , 1990, SIGGRAPH.

[5]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[6]  W. Cleveland The elements of graphing data , 1986 .

[7]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[8]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[9]  Haim Levkowitz,et al.  Color scales for image data , 1992, IEEE Computer Graphics and Applications.

[10]  J. V. van Wijk,et al.  Cushion treemaps: visualization of hierarchical information , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[11]  David Banks,et al.  Image-guided streamline placement , 1996, SIGGRAPH.

[12]  Jarke J. van Wijk Implicit Stream Surfaces , 1993, IEEE Visualization.