Real-time feasibility of nonlinear model predictive control for semi-batch reactors subject to uncertainty and disturbances

Abstract This paper presents two nonlinear model predictive control based methods for solving closed-loop stochastic dynamic optimisation problems, ensuring both robustness and feasibility with respect to state output constraints. The first one is a new deterministic approach, using the wait-and-see strategy. The key idea is to specifically anticipate violation of output hard-constraints, which are strongly affected by instantaneous disturbances, by backing off of their bounds along the moving horizon. The second method is a stochastic approach to solve nonlinear chance-constrained dynamic optimisation problems under uncertainties. The key aspect is the explicit consideration of the stochastic properties of both exogenous and endogenous uncertainties in the problem formulation (here-and-now strategy). The approach considers a nonlinear relation between uncertain inputs and the constrained state outputs. The performance of the proposed methodologies is assessed via an application to a semi-batch reactor under safety constraints, involving strongly exothermic reactions.

[1]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[2]  Günter Wozny,et al.  Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity , 2009, Comput. Chem. Eng..

[3]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[4]  Lorenz T. Biegler,et al.  Optimization of grade transitions in polyethylene solution polymerization process under uncertainty , 2016, Comput. Chem. Eng..

[5]  Panagiotis D. Christofides,et al.  Robust hybrid predictive control of nonlinear systems , 2005, Autom..

[6]  Luigi Chisci,et al.  Systems with persistent disturbances: predictive control with restricted constraints , 2001, Autom..

[7]  S. Palanki,et al.  A feedback-based implementation scheme for batch process optimization , 2000 .

[8]  Vassilios S. Vassiliadis,et al.  Optimal Laypunov exponent parameters for stability analysis of batch reactors with Model Predictive Control , 2018, Comput. Chem. Eng..

[9]  Günter Wozny,et al.  Robust Implementation of Optimal Decisions Using a Two-Layer Chance-Constrained Approach , 2011 .

[10]  Frank Allgöwer,et al.  Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control , 2014, Autom..

[11]  R. Bhushan Gopaluni,et al.  Model Predictive Control in Industry: Challenges and Opportunities , 2015 .

[12]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[13]  Vassilios S. Vassiliadis,et al.  Thermal stability criterion integrated in model predictive control for batch reactors , 2018, Chemical Engineering Science.

[14]  Pu Li,et al.  A probabilistically constrained model predictive controller , 2002, Autom..

[15]  Mohamed Soliman,et al.  A mixed-integer formulation for back-off under constrained predictive control , 2008, Comput. Chem. Eng..

[16]  H. S. Fogler,et al.  Elements of Chemical Reaction Engineering , 1986 .

[17]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[18]  Wolfgang Marquardt,et al.  Productivity optimization of an industrial semi-batch polymerization reactor under safety constraints , 2000 .

[19]  John D. Perkins,et al.  Structural design for on‐line process optimization: II. Application to a simulated FCC , 1999 .

[20]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[21]  David L. Ma,et al.  Worst‐case performance analysis of optimal batch control trajectories , 1999 .

[22]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[23]  Lorenz T. Biegler,et al.  Robustly stable adaptive horizon nonlinear model predictive control , 2018, Journal of Process Control.

[24]  Jan Van Impe,et al.  Robust multi-objective optimal control of uncertain (bio)chemical processes , 2011 .

[25]  Luis A. Ricardez-Sandoval,et al.  Stochastic back‐off algorithm for simultaneous design, control, and scheduling of multiproduct systems under uncertainty , 2018 .

[26]  Panagiotis D. Christofides,et al.  Predictive control of transport-reaction processes , 2005, Comput. Chem. Eng..

[27]  René Schenkendorf,et al.  Robust dynamic optimization of enzyme-catalyzed carboligation: A point estimate-based back-off approach , 2019, Comput. Chem. Eng..

[28]  Dominique Bonvin,et al.  NMPC using Pontryagin's Minimum Principle-Application to a two-phase semi-batch hydroformylation reactor under uncertainty , 2018, Comput. Chem. Eng..

[29]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[30]  Alexander Mitsos,et al.  Multi-model approach based on parametric sensitivities - A heuristic approximation for dynamic optimization of semi-batch processes with parametric uncertainties , 2017, Comput. Chem. Eng..

[31]  Vassilios S. Vassiliadis,et al.  Stability criterion for the intensification of batch processes with model predictive control , 2018, Chemical Engineering Research and Design.

[32]  David Q. Mayne,et al.  Nonlinear Model Predictive Control:Challenges and Opportunities , 2000 .

[33]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[34]  Helen Durand,et al.  A tutorial review of economic model predictive control methods , 2014 .

[35]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[36]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[37]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[38]  Dominique Bonvin,et al.  Control and Optimization of Batch Chemical Processes , 2017 .

[39]  Zhenghong Yu,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[40]  Pu Li,et al.  Optimization of a Semibatch Distillation Process with Model Validation on the Industrial Site , 1998 .

[41]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[42]  Hannsjörg Freund,et al.  Efficient calculation of constraint back-offs for optimization under uncertainty: A case study on maleic anhydride synthesis , 2018, Chemical Engineering Science.

[43]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[44]  Michael Nikolaou,et al.  MPC: Current practice and challenges , 2009 .

[45]  Marko Bacic,et al.  Model predictive control , 2003 .

[46]  David Q. Mayne,et al.  Robust and stochastic model predictive control: Are we going in the right direction? , 2016, Annu. Rev. Control..

[47]  Iqbal M. Mujtaba,et al.  Optimization of Batch and Semi-batch Reactors , 2013 .

[48]  Jay H. Lee,et al.  Model predictive control: Review of the three decades of development , 2011 .

[49]  Leyla Özkan,et al.  An outlook on robust model predictive control algorithms: Reflections on performance and computational aspects , 2018 .

[50]  Michael Nikolaou,et al.  Chance‐constrained model predictive control , 1999 .

[51]  Massimiliano Barolo,et al.  A backoff strategy for model‐based experiment design under parametric uncertainty , 2009 .