Benchmark and Survey of Automated Machine Learning Frameworks

Machine learning (ML) has become a vital part in many aspects of our daily life. However, building well performing machine learning applications requires highly specialized data scientists and domain experts. Automated machine learning (AutoML) aims to reduce the demand for data scientists by enabling domain experts to automatically build machine learning applications without extensive knowledge of statistics and machine learning. This paper is a combination of a survey on current AutoML methods and a benchmark of popular AutoML frameworks on real data sets. Driven by the selected frameworks for evaluation, we summarize and review important AutoML techniques and methods concerning every step in building an ML pipeline. The selected AutoML frameworks are evaluated on 137 different data sets.

[1]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[2]  Kalyan Veeramachaneni,et al.  Deep feature synthesis: Towards automating data science endeavors , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[3]  David A. Forsyth,et al.  Representation Learning , 2015, Computer.

[4]  João Gama,et al.  Characterization of Classification Algorithms , 1995, EPIA.

[5]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[6]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[7]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[8]  Christian Gagné,et al.  Bayesian optimization for conditional hyperparameter spaces , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[9]  Joaquin Vanschoren,et al.  Meta-Learning: A Survey , 2018, Automated Machine Learning.

[10]  Gustavo Alonso,et al.  Declarative Support for Sensor Data Cleaning , 2006, Pervasive.

[11]  Sergio Escalera,et al.  Design of the 2015 ChaLearn AutoML challenge , 2015, IJCNN.

[12]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[13]  Yoram Reich,et al.  Strengthening learning algorithms by feature discovery , 2012, Inf. Sci..

[14]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[15]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[16]  So Young Sohn,et al.  Meta Analysis of Classification Algorithms for Pattern Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Marius Thomas Lindauer,et al.  Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates , 2017, ArXiv.

[18]  Gisele L. Pappa,et al.  RECIPE: A Grammar-Based Framework for Automatically Evolving Classification Pipelines , 2017, EuroGP.

[19]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[20]  Christian Kirches,et al.  Mixed-integer nonlinear optimization*† , 2013, Acta Numerica.

[21]  Kirthevasan Kandasamy,et al.  Parallelised Bayesian Optimisation via Thompson Sampling , 2018, AISTATS.

[22]  Andreas Dengel,et al.  Meta-learning for evolutionary parameter optimization of classifiers , 2012, Machine Learning.

[23]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[24]  Ihab F. Ilyas,et al.  Data Cleaning: Overview and Emerging Challenges , 2016, SIGMOD Conference.

[25]  Léon Bottou,et al.  Stochastic Gradient Descent Tricks , 2012, Neural Networks: Tricks of the Trade.

[26]  Randal S. Olson,et al.  Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science , 2016, GECCO.

[27]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[28]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[29]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[30]  Sanjay Krishnan,et al.  ActiveClean: Interactive Data Cleaning For Statistical Modeling , 2016, Proc. VLDB Endow..

[31]  Yolanda Gil,et al.  Towards human-guided machine learning , 2019, IUI.

[32]  Lars Schmidt-Thieme,et al.  Automatic Frankensteining: Creating Complex Ensembles Autonomously , 2017, SDM.

[33]  Kaiyong Zhao,et al.  AutoML: A Survey of the State-of-the-Art , 2019, Knowl. Based Syst..

[34]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Combining meta-learning and search techniques to select parameters for support vector machines , 2012, Neurocomputing.

[35]  Joseph M. Hellerstein,et al.  Quantitative Data Cleaning for Large Databases , 2008 .

[36]  Rajkumar Buyya,et al.  High Performance Cluster Computing: Architectures and Systems , 1999 .

[37]  Sergio Escalera,et al.  Analysis of the AutoML Challenge Series 2015-2018 , 2019, Automated Machine Learning.

[38]  Hod Lipson,et al.  Autostacker: a compositional evolutionary learning system , 2018, GECCO.

[39]  Lior Rokach,et al.  Ensemble-based classifiers , 2010, Artificial Intelligence Review.

[40]  N. Meinshausen,et al.  Stability selection , 2008, 0809.2932.

[41]  Kevin Leyton-Brown,et al.  Parallel Algorithm Configuration , 2012, LION.

[42]  Marc Schoenauer,et al.  Automated Machine Learning with Monte-Carlo Tree Search (Extended Version) , 2019, IJCAI.

[43]  C. Petri Kommunikation mit Automaten , 1962 .

[44]  Laura Gustafson Bayesian tuning and bandits : an extensible, open source library for AutoML , 2018 .

[45]  R. Haftka,et al.  Review of multi-fidelity models , 2016, Advances in Computational Science and Engineering.

[46]  Bernd Bischl,et al.  Tunability: Importance of Hyperparameters of Machine Learning Algorithms , 2018, J. Mach. Learn. Res..

[47]  Frank Hutter,et al.  Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves , 2015, IJCAI.

[48]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[49]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[50]  Gang Luo,et al.  A review of automatic selection methods for machine learning algorithms and hyper-parameter values , 2016, Network Modeling Analysis in Health Informatics and Bioinformatics.

[51]  Paolo Papotti,et al.  KATARA: A Data Cleaning System Powered by Knowledge Bases and Crowdsourcing , 2015, SIGMOD Conference.

[52]  Aaron Klein,et al.  Bayesian Optimization with Robust Bayesian Neural Networks , 2016, NIPS.

[53]  B. Samanta,et al.  Gear fault detection using artificial neural networks and support vector machines with genetic algorithms , 2004 .

[54]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  An Experimental Study of the Combination of Meta-Learning with Particle Swarm Algorithms for SVM Parameter Selection , 2012, ICCSA.

[56]  Eyke Hüllermeier,et al.  ML-Plan for Unlimited-Length Machine Learning Pipelines , 2018, ICML 2018.

[57]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[58]  Isabelle Guyon,et al.  Taking Human out of Learning Applications: A Survey on Automated Machine Learning , 2018, 1810.13306.

[59]  Kalyan Veeramachaneni,et al.  FeatureHub: Towards Collaborative Data Science , 2017, 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[60]  Sanjay Krishnan,et al.  AlphaClean: Automatic Generation of Data Cleaning Pipelines , 2019, ArXiv.

[61]  J. N. Rijn,et al.  OpenML Benchmarking Suites , 2017, NeurIPS Datasets and Benchmarks.

[62]  Erhard Rahm,et al.  Data Cleaning: Problems and Current Approaches , 2000, IEEE Data Eng. Bull..

[63]  Bogdan Gabrys,et al.  Towards Automatic Composition of Multicomponent Predictive Systems , 2016, HAIS.

[64]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[65]  Christopher Ré,et al.  The HoloClean Framework Dataset to be cleaned Denial Constraints External Information t 1 t 4 t 2 t 3 Johnnyo ’ s , 2017 .

[66]  Jan N. van Rijn,et al.  Hyperparameter Importance Across Datasets , 2017, KDD.

[67]  Frank Hutter,et al.  Initializing Bayesian Hyperparameter Optimization via Meta-Learning , 2015, AAAI.

[68]  George C. Runger,et al.  Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination , 2009, J. Mach. Learn. Res..

[69]  Deepak S. Turaga,et al.  Learning Feature Engineering for Classification , 2017, IJCAI.

[70]  Aaron Klein,et al.  Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets , 2016, AISTATS.

[71]  Kristin P. Bennett,et al.  A Pattern Search Method for Model Selection of Support Vector Regression , 2002, SDM.

[72]  Lars Kotthoff,et al.  Auto-WEKA 2.0: Automatic model selection and hyperparameter optimization in WEKA , 2017, J. Mach. Learn. Res..

[73]  J. Vanschoren Meta-Learning , 2018, Automated Machine Learning.

[74]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[75]  Alex Alves Freitas,et al.  Analysing the Overfit of the Auto-sklearn Automated Machine Learning Tool , 2019, LOD.

[76]  Carlos Soares,et al.  Bandit-Based Automated Machine Learning , 2018, 2018 7th Brazilian Conference on Intelligent Systems (BRACIS).

[77]  Oznur Alkan,et al.  One button machine for automating feature engineering in relational databases , 2017, ArXiv.

[78]  Shaul Markovitch,et al.  Feature Generation Using General Constructor Functions , 2002, Machine Learning.

[79]  Vikram Pudi,et al.  AutoLearn — Automated Feature Generation and Selection , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[80]  Volker Märgner,et al.  A design of a preprocessing framework for large database of historical documents , 2011, HIP '11.

[81]  Lars Schmidt-Thieme,et al.  Learning hyperparameter optimization initializations , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[82]  Kyunghyun Cho,et al.  Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar , 2019, ArXiv.

[83]  Kevin Leyton-Brown,et al.  Efficient Benchmarking of Hyperparameter Optimizers via Surrogates , 2015, AAAI.

[84]  Andrew W. Moore,et al.  Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.

[85]  Bogdan Gabrys,et al.  Modelling Multi-Component Predictive Systems as Petri Nets , 2017 .

[86]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[87]  Deepak S. Turaga,et al.  Feature Engineering for Predictive Modeling using Reinforcement Learning , 2017, AAAI.

[88]  Mohammadreza Amirian,et al.  Automated Machine Learning in Practice: State of the Art and Recent Results , 2019, 2019 6th Swiss Conference on Data Science (SDS).

[89]  Juliana Freire,et al.  AlphaD3M: Machine Learning Pipeline Synthesis , 2021, ArXiv.

[90]  Kevin Leyton-Brown,et al.  An Efficient Approach for Assessing Hyperparameter Importance , 2014, ICML.

[91]  Frank Hutter,et al.  Towards Further Automation in AutoML , 2018 .

[92]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[93]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[94]  Kevin D. Seppi,et al.  Preprocessor Selection for Machine Learning Pipelines , 2018, ArXiv.

[95]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[96]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[97]  Joaquin Vanschoren,et al.  Fast Algorithm Selection Using Learning Curves , 2015, IDA.

[98]  Dawn Xiaodong Song,et al.  ExploreKit: Automatic Feature Generation and Selection , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[99]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[100]  Marius Lindauer,et al.  Warmstarting of Model-based Algorithm Configuration , 2017, AAAI.

[101]  Hugo Jair Escalante,et al.  Particle Swarm Model Selection for Authorship Verification , 2009, CIARP.

[102]  Joseph M. Hellerstein,et al.  Potter's Wheel: An Interactive Data Cleaning System , 2001, VLDB.

[103]  Bernd Bischl,et al.  OpenML Benchmarking Suites and the OpenML100 , 2017, ArXiv.

[104]  Nando de Freitas,et al.  A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning , 2010, ArXiv.

[105]  Aaron Klein,et al.  RoBO : A Flexible and Robust Bayesian Optimization Framework in Python , 2017 .

[106]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[107]  Simon M. Lucas,et al.  A Survey of Monte Carlo Tree Search Methods , 2012, IEEE Transactions on Computational Intelligence and AI in Games.

[108]  Jimeng Sun,et al.  FLASH: Fast Bayesian Optimization for Data Analytic Pipelines , 2016, KDD.

[109]  Charles Sutton,et al.  Data Cleaning using Probabilistic Models of Integrity Constraints , 2016, NIPS 2016.

[110]  Matthias Seeger,et al.  Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning , 2019, NeurIPS.

[111]  D. Ginsbourger,et al.  Dealing with asynchronicity in parallel Gaussian Process based global optimization , 2010 .

[112]  Parikshit Sondhi,et al.  Feature Construction Methods : A Survey , 2009 .

[113]  Dimitris Margaritis Toward Provably Correct Feature Selection in Arbitrary Domains , 2009, NIPS.

[114]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[115]  Nando de Freitas,et al.  On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning , 2014, AISTATS.

[116]  Fela Winkelmolen,et al.  Amazon SageMaker Autopilot: a white box AutoML solution at scale , 2020, DEEM@SIGMOD.

[117]  Bernd Bischl,et al.  An Open Source AutoML Benchmark , 2019, ArXiv.

[118]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[119]  Ameet Talwalkar,et al.  A System for Massively Parallel Hyperparameter Tuning , 2020, MLSys.

[120]  D. Sculley,et al.  Google Vizier: A Service for Black-Box Optimization , 2017, KDD.

[121]  Arun Ross,et al.  ATM: A distributed, collaborative, scalable system for automated machine learning , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[122]  Ryan P. Adams,et al.  Gradient-based Hyperparameter Optimization through Reversible Learning , 2015, ICML.

[123]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[124]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[125]  Randal S. Olson,et al.  TPOT: A Tree-based Pipeline Optimization Tool for Automating Machine Learning , 2016, AutoML@ICML.

[126]  Tim Kraska,et al.  SampleClean: Fast and Reliable Analytics on Dirty Data , 2015, IEEE Data Eng. Bull..

[127]  Hahn-Ming Lee,et al.  Model selection of SVMs using GA approach , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[128]  Eyke Hüllermeier,et al.  ML-Plan: Automated machine learning via hierarchical planning , 2018, Machine Learning.

[129]  Dennis Shasha,et al.  AJAX: an extensible data cleaning tool , 2000, SIGMOD '00.

[130]  David D. Cox,et al.  Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms , 2013, SciPy.

[131]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[132]  Aixia Guo,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2014 .

[133]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[134]  Tim Kraska,et al.  Automating model search for large scale machine learning , 2015, SoCC.

[135]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[136]  Alberto Abelló,et al.  On the predictive power of meta-features in OpenML , 2017, Int. J. Appl. Math. Comput. Sci..

[137]  Shaul Markovitch,et al.  Recursive Feature Generation for Knowledge-based Learning , 2018, ArXiv.

[138]  Kirthevasan Kandasamy,et al.  Asynchronous Parallel Bayesian Optimisation via Thompson Sampling , 2017, ArXiv.

[139]  F. Hutter,et al.  Practical Automated Machine Learning for the AutoML Challenge 2018 , 2018 .

[140]  Aaron Klein,et al.  Hyperparameter Optimization , 2017, Encyclopedia of Machine Learning and Data Mining.

[141]  Michèle Sebag,et al.  Feature Selection as a One-Player Game , 2010, ICML.

[142]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[143]  Aaron Klein,et al.  Efficient and Robust Automated Machine Learning , 2015, NIPS.

[144]  Jan A Snyman,et al.  Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms , 2005 .

[145]  R. L. Anderson,et al.  RECENT ADVANCES IN FINDING BEST OPERATING CONDITIONS , 1953 .

[146]  Randal S. Olson,et al.  Automating Biomedical Data Science Through Tree-Based Pipeline Optimization , 2016, EvoApplications.

[147]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[148]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[149]  Larry Bull,et al.  Genetic Programming with a Genetic Algorithm for Feature Construction and Selection , 2005, Genetic Programming and Evolvable Machines.

[150]  Scott Langevin Distil : A Mixed-Initiative Model Discovery System for Subject Matter Experts ( Demo ) , 2018 .

[151]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[152]  Luís Torgo,et al.  OpenML: networked science in machine learning , 2014, SKDD.

[153]  Lars Schmidt-Thieme,et al.  Hyperparameter Search Space Pruning - A New Component for Sequential Model-Based Hyperparameter Optimization , 2015, ECML/PKDD.

[154]  Mihaela van der Schaar,et al.  AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning , 2018, ICML.

[155]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[156]  Katarzyna Musial,et al.  AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model , 2020, IDA.

[157]  Khurana Udayan,et al.  Cognito: Automated Feature Engineering for Supervised Learning , 2016 .

[158]  Jasper Snoek,et al.  Freeze-Thaw Bayesian Optimization , 2014, ArXiv.

[159]  Demis Hassabis,et al.  Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm , 2017, ArXiv.

[160]  Steven Reece,et al.  Automated Machine Learning on Big Data using Stochastic Algorithm Tuning , 2014 .

[161]  Yan Xu,et al.  Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning , 2018, KDD.

[162]  Chris Eliasmith,et al.  Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn , 2014, SciPy.

[163]  François Laviolette,et al.  Sequential Model-Based Ensemble Optimization , 2014, UAI.

[164]  Isabelle Guyon,et al.  Analysis of the IJCNN 2007 agnostic learning vs. prior knowledge challenge , 2008, Neural Networks.

[165]  Rémi Munos,et al.  From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning , 2014, Found. Trends Mach. Learn..

[166]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[167]  Kenneth A. De Jong,et al.  Genetic algorithms as a tool for feature selection in machine learning , 1992, Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI '92.

[168]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[169]  Sherif Sakr,et al.  Automated Machine Learning: State-of-The-Art and Open Challenges , 2019, ArXiv.

[170]  Mengjie Zhang,et al.  Genetic programming for feature construction and selection in classification on high-dimensional data , 2016, Memetic Comput..

[171]  Alexander Allen,et al.  Benchmarking Automatic Machine Learning Frameworks , 2018, ArXiv.

[172]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[173]  Paolo Papotti,et al.  BigDansing: A System for Big Data Cleansing , 2015, SIGMOD Conference.

[174]  Katharina Eggensperger,et al.  Towards an Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters , 2013 .

[175]  Yolanda Gil,et al.  P4ML: A Phased Performance-Based Pipeline Planner for Automated Machine Learning , 2018 .

[176]  Luca Caucci,et al.  Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm , 2010, IEEE Transactions on Nuclear Science.

[177]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[178]  Joshua B. Tenenbaum,et al.  Building machines that learn and think like people , 2016, Behavioral and Brain Sciences.

[179]  Andreas Krause,et al.  Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization , 2012, ICML.

[180]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[181]  Ameet Talwalkar,et al.  Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits , 2016, ArXiv.

[182]  Ameet Talwalkar,et al.  Non-stochastic Best Arm Identification and Hyperparameter Optimization , 2015, AISTATS.

[183]  Fabian Pedregosa,et al.  Hyperparameter optimization with approximate gradient , 2016, ICML.

[184]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[185]  András György,et al.  LEAPSANDBOUNDS: A Method for Approximately Optimal Algorithm Configuration , 2018, ICML.

[186]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[187]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[188]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[189]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[190]  D. Ginsbourger,et al.  Kriging is well-suited to parallelize optimization , 2010 .

[191]  Kate Smith-Miles,et al.  A meta-learning approach to automatic kernel selection for support vector machines , 2006, Neurocomputing.

[192]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[193]  Jan N. van Rijn,et al.  Does Feature Selection Improve Classification? A Large Scale Experiment in OpenML , 2016, IDA.

[194]  Ron Kohavi,et al.  Automatic Parameter Selection by Minimizing Estimated Error , 1995, ICML.