Metal-organic frameworks.

Metal-organic frameworks are a recently-identified class of porous polymeric material, consisting of metal ions linked together by organic bridging ligands, and are a new development on the interface between molecular coordination chemistry and materials science. A range of novel structures has been prepared which feature amongst the largest pores known for crystalline compounds, very high sorption capacities and complex sorption behaviour not seen in aluminosilicate zeolites. The development of synthetic approaches to these materials and investigations of their properties are reviewed.

[1]  A. Fletcher,et al.  Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni2(4,4'-bipyridine)3(NO3)4: guest modification of host sorption behavior. , 2001, Journal of the American Chemical Society.

[2]  Zhengtao Xu,et al.  Variable Pore Size, Variable Chemical Functionality, and an Example of Reactivity within Porous Phenylacetylene Silver Salts , 1999 .

[3]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[4]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[5]  M. Zaworotko,et al.  Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. , 2001, Angewandte Chemie.

[6]  C. Zheng,et al.  A new porous three-dimensional lanthanide coordination polymer. , 2000, Inorganic chemistry.

[7]  Reineke,et al.  A Microporous Lanthanide-Organic Framework. , 1999, Angewandte Chemie.

[8]  M. Zaworotko,et al.  Nanoporous Structures by Design. , 2000, Angewandte Chemie.

[9]  S. Kitagawa,et al.  A Pillared‐Layer Coordination Polymer Network Displaying Hysteretic Sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine‐2,3‐dicarboxylate; dpyg=1,2‐Di(4‐pyridyl)glycol) , 2002 .

[10]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[11]  Andrea Prior,et al.  A Versatile Family of Interconvertible Microporous Chiral Molecular Frameworks: The First Example of Ligand Control of Network Chirality , 2000 .

[12]  Jeffrey S. Moore,et al.  Spontaneous assembly of a hinged coordination network , 1995, Nature.

[13]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[14]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[15]  K. Biradha,et al.  Crystal-to-crystal sliding of 2D coordination layers triggered by guest exchange. , 2002, Angewandte Chemie.

[16]  S. James,et al.  A Nanoporous Metal–Organic Framework Based on Bulky Phosphane Ligands We thank the McClay Trust and the EPSRC for funding, and are grateful to the referees for their suggestions. , 2002 .

[17]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[18]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[19]  Robin D. Rogers,et al.  Supramolecular Isomerism in Coordination Polymers: Conformational Freedom of Ligands in [Co(NO3)2(1,2‐bis(4‐pyridyl)ethane)1.5]n , 1997 .

[20]  T. Reineke,et al.  From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites , 1999 .

[21]  T. Groy,et al.  A Molecular Railroad with Large Pores: Synthesis and Structure of Ni(4,4'-bpy)(2.5)(H(2)O)(2)(ClO(4))(2).1.5(4,4'-bpy).2H(2)O. , 1997, Inorganic chemistry.

[22]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[23]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[24]  Cameron J Kepert,et al.  Flexible sorption and transformation behavior in a microporous metal-organic framework. , 2002, Journal of the American Chemical Society.

[25]  T. Groy,et al.  Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid , 1996 .

[26]  A. Michaelides,et al.  Assembly of a Porous Three-Dimensional Coordination Polymer: Crystal Structure of {[La2(adipate)3(H2O)4]6H2O}n , 1998 .

[27]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[28]  P. Gravereau,et al.  Les hexacyanoferrates zéolithiques: structure cristalline de K2Zn3[Fe(CN)6]2.xH2O , 1979 .

[29]  T. Reineke,et al.  Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. , 2001, Journal of the American Chemical Society.

[30]  G. Wong,et al.  Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks. , 1999, Angewandte Chemie.

[31]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[32]  Michael O'Keeffe,et al.  Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1 , 2000 .

[33]  Hailian Li,et al.  T-SHAPED MOLECULAR BUILDING UNITS IN THE POROUS STRUCTURE OF AG(4,4'-BPY).NO3 , 1996 .

[34]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .

[35]  Hailian Li,et al.  Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids† , 1998 .

[36]  Alexander J. Blake,et al.  ANION CONTROL IN BIPYRIDYLSILVER(I) NETWORKS : A HELICAL POLYMERIC ARRAY , 1997 .

[37]  A. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[38]  R. Puddephatt,et al.  Strongly luminescent three-coordinate gold(I) polymers: 1D chain-link fence and 2D chickenwire structures. , 2001, Journal of the American Chemical Society.

[39]  P. A. Jackson,et al.  A Robust (10,3)-a Network Containing Chiral Micropores in the AgI Coordination Polymer of a Bridging Ligand that Provides Three Bidentate Metal-Binding Sites. , 1998, Angewandte Chemie.

[40]  Tatsuo C. Kobayashi,et al.  Formation of a One-Dimensional Array of Oxygen in a Microporous Metal-Organic Solid , 2002, Science.

[41]  C. Janiak Functional Organic Analogues of Zeolites Based on Metal–Organic Coordination Frameworks , 1997 .

[42]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[43]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[44]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[45]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[46]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[47]  M. Zaworotko Materials science: Open season for solid frameworks , 1999, Nature.

[48]  Jeffrey S. Moore,et al.  Zeolite-like behavior of a coordination network , 1995 .

[49]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[50]  Kumar Biradha,et al.  A springlike 3D-coordination network that shrinks or swells in a crystal-to-crystal manner upon guest removal or readsorption. , 2002, Angewandte Chemie.