Experiment on the mass-stripping of an interstellar cloud in a high Mach number post-shock flow

The high Mach number flow that follows an astrophysical shock can strip mass from interstellar clouds located in the flow. Eventually, the mass-stripping may fully strip the cloud, dispersing the entire cloud mass into the flow, and incidentally ending the cloud’s star formation. Experiments have been carried out at the Omega laser [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)], attempting to simulate and quantify the mass-stripping as it occurs when a shock passes through interstellar clouds. Ten laser beams with 5kJ of energy drive a strong shock into a cylinder filled with low-density foam with an embedded 120μm Al sphere simulating an interstellar cloud. The density ratio between Al and foam is ∼9. Time-resolved x-ray radiographs show the cloud getting compressed by the shock (t≈5ns), undergoing a classical Kelvin-Helmholtz roll-up (12ns) followed by a Widnall instability (30ns), an inherently 3D effect that breaks the 2D symmetry of the experiment. Material is continu...

[1]  J. Nikuradse,et al.  Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren , 1930 .

[2]  S. Goldstein Modern developments in fluid dynamics , 1938 .

[3]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[4]  J. Nicholls,et al.  Aerodynamic shattering of liquid drops. , 1968 .

[5]  F. White Viscous Fluid Flow , 1974 .

[6]  Donald B. Bliss,et al.  The instability of short waves on a vortex ring , 1974, Journal of Fluid Mechanics.

[7]  P. Woodward Shock-driven implosion of interstellar gas clouds and star formation. , 1976 .

[8]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[9]  J. Ostriker,et al.  Supernova remnant revolution in an inhomogeneous medium. I - Numerical models , 1981 .

[10]  J. Nittmann,et al.  The dynamical destruction of shocked gas clouds , 1982 .

[11]  S. Heathcote,et al.  The state of clouds in a violent interstellar medium , 1983 .

[12]  Max Pettini,et al.  The remarkable kinematics of the WR wind-blown bubble RCW 58 , 1984 .

[13]  Linda J. Smith,et al.  Mass-loaded astronomical flows – I. General principles and their application to RCW 58 , 1986 .

[14]  G. Zimmerman,et al.  A new quotidian equation of state (QEOS) for hot dense matter , 1988 .

[15]  P. Woodward,et al.  Shock wave interactions with interstellar clouds. , 1990 .

[16]  Stephen M. Lane,et al.  HYADES—A plasma hydrodynamics code for dense plasma studies , 1994 .

[17]  R. Klein,et al.  On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds , 1994 .

[18]  T. S. Perry,et al.  The flexible x‐ray imager , 1996 .

[19]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[20]  J. Clérouin,et al.  The viscosity of dense plasmas mixtures , 1998 .

[21]  R. P. Drake,et al.  Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics , 1999 .

[22]  Barukh Yaakobi,et al.  Measurement of preheat due to fast electrons in laser implosions , 2000 .

[23]  F. Palla,et al.  Accelerating Star Formation in Clusters and Associations , 2000 .

[24]  O. L. Landen,et al.  Ablation Front Rayleigh- Taylor Growth Experiments in Spherically Convergent Geometry , 2000 .

[25]  R. Klein,et al.  Interaction of Supernova Remnants with Interstellar Clouds: From the Nova Laser to the Galaxy , 2000 .

[26]  L. Hartmann,et al.  Rapid Formation of Molecular Clouds and Stars in the Solar Neighborhood , 2001, astro-ph/0108023.

[27]  M. Juvela,et al.  The Turbulent Shock Origin of Proto-Stellar Cores , 2000, astro-ph/0011122.

[28]  T. Boehly,et al.  Experimental investigation of the three-dimensional interaction of a strong shock with a spherical density inhomogeneity. , 2002, Physical review letters.

[29]  Richard I. Klein,et al.  The Interaction of Supernova Remnants with Interstellar Clouds: Experiments on the Nova Laser , 2003 .

[30]  P. Anninos,et al.  Radiative Shock-induced Collapse of Intergalactic Clouds , 2003, astro-ph/0311298.

[31]  R. P. Drake,et al.  Numerical simulatin of supernova-relevant laser-driven hydro experiments on OMEGA , 2004 .

[32]  H. Robey,et al.  Effects of viscosity and mass diffusion in hydrodynamically unstable plasma flows , 2004 .

[33]  R. A. Fesen,et al.  Model Simulations of a Shock-Cloud Interaction in the Cygnus Loop , 2005 .

[34]  A. Maggio,et al.  Shock-cloud interaction in the Vela SNR observed with XMM-Newton , 2005, astro-ph/0509911.

[35]  Riccardo Bonazza,et al.  Experimental investigation of a strongly shocked gas bubble. , 2005, Physical review letters.

[36]  Inertial-Fusion-Related Hydrodynamic Instabilities in a Spherical Gas Bubble Accelerated by a Planar Shock Wave , 2005 .

[37]  I. Bonnell,et al.  The onset of collapse in turbulently supported molecular clouds , 2005 .

[38]  T. Heckman,et al.  The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds , 2005, astro-ph/0506645.

[39]  Kathryn A. Flanagan,et al.  Chandra X-Ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot Region of Puppis A , 2005, astro-ph/0508243.

[40]  Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.

[41]  D. Byun,et al.  Interaction between the Supernova Remnant HB 21 and Molecular Clouds , 2006 .

[42]  R. P. Drake,et al.  High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics , 2006 .