Construction of bivariate S-distributions with copulas
暂无分享,去创建一个
[1] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[2] Albert Sorribas,et al. GS-distributions: A new family of distributions for continuous unimodal variables , 2006, Comput. Stat. Data Anal..
[3] John P. Klein,et al. Estimates of marginal survival for dependent competing risks based on an assumed copula , 1995 .
[4] Samuel Kotz,et al. Advances in Probability Distributions with Given Marginals , 1991 .
[5] T. Louis,et al. Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.
[6] Eberhard O. Voit,et al. Scalability Properties of the S‐Distribution , 1998 .
[7] A Sorribas,et al. Estimating age-related trends in cross-sectional studies using S-distributions. , 2000, Statistics in medicine.
[8] Albert Sorribas,et al. A new parametric method based on S‐distributions for computing receiver operating characteristic curves for continuous diagnostic tests , 2002, Statistics in medicine.
[9] Richard J. Beckman,et al. A New Family of Probability Distributions with Applications to Monte Carlo Studies , 1980 .
[10] R. Nelsen. An Introduction to Copulas , 1998 .
[11] S. G. Meester,et al. A parametric model for cluster correlated categorical data. , 1994, Biometrics.
[12] Harry Joe,et al. Parametric families of multivariate distributions with given margins , 1993 .
[13] K. Pearson. Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .
[14] Eberhard O. Volt,et al. Tutorial : S-system analysis of continuous univariate probability distributions , 1992 .
[15] E O Voit,et al. Random Number Generation from Right‐Skewed, Symmetric, and Left‐Skewed Distributions , 2000, Risk analysis : an official publication of the Society for Risk Analysis.
[16] Eberhard O. Voit,et al. A Maximum Likelihood Estimator for Shape Parameters of S‐Distributions , 2000 .
[17] Christian Genest,et al. A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .
[18] Eberhard O. Voit,et al. Estimation and completion of survival data with piecewise linear models and S-distributions , 2005 .
[19] Eberhard O. Voit,et al. Hierarchical Monte Carlo modeling with S-distributions: Concepts and illustrative analysis of mercury contamination in king mackerel , 1995 .
[20] M. A. Savageau,et al. A Suprasystem of Probability Distributions , 1982 .
[21] Eberhard O. Voit,et al. Canonical nonlinear modeling : S-system approach to understanding complexity , 1991 .
[22] Eberhard O. Voit. Dynamic trends in distributions , 1996 .
[23] B. Schweizer,et al. Thirty Years of Copulas , 1991 .
[24] J. Rosenberg,et al. A General Approach to Integrated Risk Management with Skewed, Fat-Tailed Risk , 2004 .
[25] D. Clayton. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .
[26] Eberhard O. Voit,et al. Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .
[27] Eberhard O. Voit,et al. SETTING PREDICTION LIMITS FOR MERCURY CONCENTRATIONS IN FISH HAVING HIGH BIOACCUMULATION POTENTIAL , 1996 .
[28] Eberhard O. Voit,et al. The S‐Distribution: Approximation of Discrete Distributions , 1994 .
[29] Eberhard O. Voit,et al. The S‐Distribution A Tool for Approximation and Classification of Univariate, Unimodal Probability Distributions , 1992 .
[30] Janos Galambos,et al. Order Statistics of Samples from Multivariate Distributions , 1975 .
[31] SIMULATING CORRELATED DEFAULT PROCESSES USING COPULAS : A CRITERION-BASED APPROACH , 2003 .
[32] Albert Sorribas,et al. Computer modeling of dynamically changing distributions of random variables , 2000 .
[33] M A Savageau,et al. Growth of complex systems can be related to the properties of their underlying determinants. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[34] Elisabetta Strazzera,et al. The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests , 2004 .
[35] Emiliano A. Valdez,et al. Understanding Relationships Using Copulas , 1998 .
[36] R. Plackett. A Class of Bivariate Distributions , 1965 .
[37] Eberhard O. Voit,et al. A Simple, Flexible Failure Model , 1995 .
[38] H. Joe. Multivariate models and dependence concepts , 1998 .
[39] Murray D Smith,et al. Modeling Sample Selection Using Archimedean Copulas , 2003 .
[40] Albert Sorribas,et al. Analytical Quantile Solution for the S‐distribution, Random Number Generation and Statistical Data Modeling , 2001, 1910.05087.
[41] M. Savageau. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.
[42] K. Pearson. Contributions to the Mathematical Theory of Evolution , 1894 .
[43] C. Genest,et al. Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .
[44] P. Grambsch,et al. The effects of transformations and preliminary tests for non-linearity in regression. , 1991, Statistics in medicine.
[45] A. Sampson,et al. Uniform representations of bivariate distributions , 1975 .