Software-defined reconfigurable VCSEL-based transmission.

We propose and demonstrate a programmable and self-adaptive VCSEL-based transponder for short-reach applications that is easily extensible up to access and metro scenarios. The transponder presents a monitoring system that feeds the transponder controller in order to maintain the proper transmission performance. The emerging NETCONF protocol including the YANG model controls and manages the transponder. NETCONF messages are reported for two reference scenarios - uncooled and cooled systems - together with performance at varying environment conditions. For the uncooled scenario heating processes on the board are emulated with various dynamics, the effect on the performance of a 25 Gbps WDM channel is checked through optical power monitoring and the control plane reacts so as to optimize the performance by suitably controlling the bias current. For slow temperature variations the system is able to avoid service outage whereas for variations faster than 1.3 °C/s outage occurs and corresponding notifications are opportunely triggered. For the cooled scenario, an optical power loss is emulated with consequent service outage, leading to a reconfiguration of the transponder data rate from 25 to 10 Gbps, so as to recover successful transmission.