Heat transfer and flow of a dense suspension between two cylinders

Abstract Concentrated suspensions, composed of solid particles and fluids, are used in many industrial applications. In this paper, we study the effects of temperature on the flow of a concentrated (dense) suspension between two long rotating cylinders. The viscosity of the suspension is assumed to depend on temperature and volume fraction of the solid particles. Based on these concepts, a generalized viscosity model is proposed and the model parameters are fitted with experimental data. The numerical results show good agreement with the available experimental measurements.

[1]  Christopher W. Macosko,et al.  Rheology: Principles, Measurements, and Applications , 1994 .

[2]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[3]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  Marcel Crochet,et al.  Numerical Prediction of Fiber Orientation in Dilute Suspensions , 1983 .

[5]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[6]  Pierre J. Carreau,et al.  Rheology of Polymeric Systems: Principles and Applications , 1997, Engineering Plastics.

[7]  Mehrdad Massoudi,et al.  Heat transfer analysis and flow of a slag-type fluid: Effects of variable thermal conductivity and viscosity , 2015 .

[8]  Jenq-Shyong Chen,et al.  Bearing load analysis and control of a motorized high speed spindle , 2005 .

[9]  M. Massoudi,et al.  Unsteady flows of inhomogeneous incompressible fluids , 2011 .

[10]  H. Rabia,et al.  Oilwell Drilling Engineering : Principles and Practice , 1986 .

[11]  Sehyun Shin,et al.  Thermal conductivity of suspensions in shear flow fields , 2000 .

[12]  Dennis A. Siginer,et al.  Flow of drilling fluids in eccentric annuli , 1998 .

[13]  D. Jeffrey,et al.  Conduction through a random suspension of spheres , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  D. Joseph,et al.  Lubrication of a Porous Bearing—Reynolds’ Solution , 1966 .

[15]  Mehrdad Massoudi,et al.  Heat Transfer and Dissipation Effects in the Flow of a Drilling Fluid , 2016 .

[16]  Avinoam Nir,et al.  Viscous dissipation rate in concentrated suspensions , 1994 .

[17]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[18]  D. E. Carlson,et al.  An introduction to thermomechanics , 1983 .

[19]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[20]  Ravi Prasher,et al.  Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction , 2003 .

[21]  Mehrdad Massoudi,et al.  Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study , 2017 .

[22]  M. Kaviany Principles of heat transfer in porous media , 1991 .

[23]  Nadine Aubry,et al.  A numerical study of blood flow using mixture theory. , 2014, International journal of engineering science.

[24]  Ryen Caenn,et al.  Drilling fluids : State of the art , 1996 .

[25]  R. Roscoe The viscosity of suspensions of rigid spheres , 1952 .

[26]  Xiao Dong Chen,et al.  Study of the effect of entrance length on heat transfer to fibre suspensions in annular flow heat exchangers , 2014 .

[27]  Hadrien Benoit,et al.  Dense suspension of solid particles as a new heat transfer fluid for concentrated solar thermal plants: on-sun proof of concept , 2013 .

[28]  Samuel R. Subia,et al.  Modelling of concentrated suspensions using a continuum constitutive equation , 1998, Journal of Fluid Mechanics.

[29]  M. Lebouché,et al.  Experimental thermomechanic study of Newtonian and non-Newtonian suspension flows , 2005 .

[30]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. II. Analysis of the data , 1975 .

[31]  Tülay A. Özbelge Heat transfer enhancement in turbulent upward flows of liquid-solid suspensions through vertical annuli , 2001 .

[32]  Mehrdad Massoudi,et al.  Flow of a generalized second grade fluid between heated plates , 1993 .

[33]  A. Spencer Continuum Mechanics , 1967, Nature.

[34]  J. R. Abbott,et al.  A constitutive equation for concentrated suspensions that accounts for shear‐induced particle migration , 1992 .

[35]  B. Straughan,et al.  Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect. , 1993 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  M. Louge,et al.  Heat transfer enhancement in dense suspensions of agitated solids. Part I: Theory , 2008 .

[38]  Tian-Jian Hsu,et al.  On modeling boundary layer and gravity‐driven fluid mud transport , 2007 .

[39]  M. Massoudi,et al.  Falling film flow of a viscoelastic fluid along a wall , 2014 .

[40]  S. L. Soo,et al.  Fluid dynamics of multiphase systems , 1967 .

[41]  A. Bertozzi,et al.  Hyperbolic systems of conservation laws in gravity-driven, particle-laden thin-film flows , 2014 .

[42]  Li Wang,et al.  High temperature and high pressure rheological properties of high-density water-based drilling fluids for deep wells , 2012, Petroleum Science.

[43]  P. Asinari,et al.  A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications , 2016 .

[44]  Samuel R. Subia,et al.  Particle migration in a Couette apparatus: Experiment and modeling , 1998 .

[45]  D. Whiffen Thermodynamics , 1973, Nature.

[46]  Thomas F. Irvine,et al.  Shear rate dependent thermal conductivity measurements of non-Newtonian fluids , 1997 .

[47]  J. J. Fourier,et al.  The Analytical Theory of Heat , 2009 .

[48]  Joe D. Goddard,et al.  Experiments on the conductivity of suspensions of ionically‐conductive spheres , 1990 .

[49]  Avtar Singh Ahuja,et al.  Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results , 1975 .

[50]  Mehrdad Massoudi,et al.  Analytical solutions to Stokes-type flows of inhomogeneous fluids , 2012, Appl. Math. Comput..

[51]  Goodarz Ahmadi,et al.  Boundary Layer Flow and Heat Transfer of FMWCNT/Water Nanofluids over a Flat Plate , 2016 .

[52]  M. Massoudi,et al.  On the coefficients of the interaction forces in a two-phase flow of a fluid infused with particles , 2014 .

[53]  Goodarz Ahmadi,et al.  Heat Transfer and Pressure Drop in Fully Developed Turbulent Flows of Graphene Nanoplatelets-Silver/Water Nanofluids , 2016 .

[54]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[55]  Andreas Acrivos,et al.  Shear-induced resuspension in a couette device , 1993 .

[56]  Mehrdad Massoudi,et al.  A note on the meaning of mixture viscosity using the classical continuum theories of mixtures , 2008 .

[57]  Xiande Fang,et al.  Heat transfer and critical heat flux of nanofluid boiling: A comprehensive review , 2016 .

[58]  J. E. Dunn,et al.  Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade , 1974 .

[59]  W. Pabst Simple second-order expression: For the porosity dependence of thermal conductivity , 2005 .

[60]  J. Antaki,et al.  Study of blood flow in several benchmark micro-channels using a two-fluid approach. , 2015, International journal of engineering science.

[61]  Brian J. Briscoe,et al.  The properties of drilling muds at high pressures and high temperatures , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[62]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[63]  Ingo Müller,et al.  On the entropy inequality , 1967 .

[64]  Ali J. Chamkha,et al.  Nanofluid flow and heat transfer in porous media: A review of the latest developments , 2017 .

[65]  Mehrdad Massoudi,et al.  Chemically-reacting fluids with variable transport properties , 2012, Appl. Math. Comput..

[66]  R. Rivlin,et al.  Stress-Deformation Relations for Isotropic Materials , 1955 .

[67]  Yuuml,et al.  Investigation of some physical and mechanical properties of concrete produced with barite aggregate , 2010 .

[68]  Shozaburo Saito,et al.  PNEUMATIC CONVEYING OF SOLIDS THROUGH STRAIGHT PIPES , 1969 .

[69]  Hashim,et al.  A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreau nanofluids , 2016 .

[70]  Wei-Tao Wu,et al.  Fully developed flow of a drilling fluid between two rotating cylinders , 2016, Appl. Math. Comput..

[71]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[72]  I. Krieger,et al.  Rheology of monodisperse latices , 1972 .

[73]  Kumbakonam R. Rajagopal,et al.  EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY , 1995 .

[74]  Bangming Gu,et al.  Thermal conductivity of nanofluids containing high aspect ratio fillers , 2013 .

[75]  Mehrdad Massoudi,et al.  A Mixture Theory formulation for hydraulic or pneumatic transport of solid particles , 2010 .

[76]  J. Eastman,et al.  Enhanced thermal conductivity through the development of nanofluids , 1996 .