If Physics Is an Information Science, What Is an Observer?

Interpretations of quantum theory have traditionally assumed a “Galilean” observer, a bare “point of view” implemented physically by a quantum system. This paper investigates the consequences of replacing such an informationally-impoverished observer with an observer that satisfies the requirements of classical automata theory, i.e., an observer that encodes sufficient prior information to identify the system being observed and recognize its acceptable states. It shows that with reasonable assumptions about the physical dynamics of information channels, the observations recorded by such an observer will display the typical characteristics predicted by quantum theory, without requiring any specific assumptions about the observer’s physical implementation.

[1]  W. Ashby,et al.  An Introduction to Cybernetics , 1957 .

[2]  On the decoherence of primordial fluctuations during inflation , 2006, astro-ph/0601134.

[3]  R. Kastner The Quantum Liar Experiment in Cramer's Transactional Interpretation , 2009, 0906.1626.

[4]  J GaySimon,et al.  Quantum programming languages: survey and bibliography , 2006 .

[5]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[6]  C. Fuchs Quantum Mechanics as Quantum Information (and only a little more) , 2002, quant-ph/0205039.

[7]  Toward an Information-based Interpretation of Quantum Mechanics and the Quantum-Classical Transition , 2011, 1108.0991.

[8]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[9]  David Wallace,et al.  Philosophy of Quantum Mechanics , 2008 .

[10]  S. BellJ,et al.  Einstein‐Podolsky‐Rosen逆理 量子力学での遠隔作用か , 1987 .

[11]  John Archibald Wheeler,et al.  Recent Thinking about the Nature of the Physical World: It from Bit a , 1992 .

[12]  David Wallace,et al.  The Quantum Measurement Problem: State of Play , 2007, 0712.0149.

[13]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[14]  N. P. Landsman Between classical and quantum , 2005 .

[15]  Eric Winsberg,et al.  Studies in History and Philosophy of Modern Physics , 2010 .

[16]  Chris Fields,et al.  Classical system boundaries cannot be determined within quantum Darwinism , 2010, 1008.0283.

[17]  Robert W. Spekkens,et al.  Formulating Quantum Theory as a Causally Neutral Theory of Bayesian Inference , 2011 .

[18]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[19]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[20]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[21]  R. Omnes Decoherence and Ontology , 2019, Synthese Library.

[22]  E. Rolls High-level vision: Object recognition and visual cognition, Shimon Ullman. MIT Press, Bradford (1996), ISBN 0 262 21013 4 , 1997 .

[23]  Chris Fields,et al.  Autonomy All the Way Down: Systems and Dynamics in Quantum Bayesianism , 2011, 1108.2024.

[24]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[25]  E. Joos,et al.  The emergence of classical properties through interaction with the environment , 1985 .

[26]  Toward a quantum theory of observation , 1973, quant-ph/0306151.

[27]  John G. Cramer,et al.  An Overview of the Transactional Interpretation , 1988 .

[28]  W. Zurek,et al.  Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information , 2005, quant-ph/0505031.

[29]  David Poulin,et al.  Objective properties from subjective quantum states: environment as a witness. , 2004, Physical review letters.

[30]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[31]  H. Stapp The importance of quantum decoherence in brain processes , 2000, quant-ph/0010029.

[32]  R. Griffiths Consistent Quantum Theory , 2001 .

[33]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[34]  M. Chiara,et al.  Philosophy of quantum mechanics , 1982 .

[35]  W. Zurek Quantum Darwinism , 2009, 0903.5082.

[36]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[37]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[38]  L. Susskind,et al.  Multiverse interpretation of quantum mechanics , 2011, 1105.3796.

[39]  R. Griffiths Types of quantum information , 2007, 0707.3752.

[40]  Edward Farhi,et al.  Analog analogue of a digital quantum computation , 1996 .

[41]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[42]  Juan G. Roederer Information and its role in nature , 2005 .

[43]  Roland Rüdiger,et al.  Quantum Programming Languages: An Introductory Overview , 2007, Comput. J..

[44]  James H. Moor,et al.  Knowledge and the Flow of Information. , 1982 .

[45]  Probabilities from Entanglement, Born's Rule from Envariance , 2004, quant-ph/0405161.

[46]  J. Rau Measurement-Based Quantum Foundations , 2009, 0909.1036.

[47]  H. Zeh On the interpretation of measurement in quantum theory , 1970 .

[48]  Robert B. Griffiths,et al.  A Consistent Quantum Ontology , 2011, 1105.3932.

[49]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[50]  Carlo Rovelli Quantum gravity , 2008, Scholarpedia.

[51]  Chris Fields,et al.  Quantum Darwinism Requires an Extra-Theoretical Assumption of Encoding Redundancy , 2010, 1003.5136.

[52]  H. D. Zeh THE PROBLEM OF CONSCIOUS OBSERVATION IN QUANTUM MECHANICAL DESCRIPTION , 1999 .

[53]  William P. Alston,et al.  Knowledge and the Flow of Information , 1985 .

[54]  N. Bohr The Quantum Postulate and the Recent Development of Atomic Theory , 1928, Nature.

[55]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[56]  Max Tegmark,et al.  The Interpretation of Quantum Mechanics: Many Worlds or Many Words? , 1997, Fortschritte der Physik.

[57]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[58]  J. Hartle The Quasiclassical Realms of This Quantum Universe , 1994, The Quantum Universe.

[59]  C. Rovelli,et al.  Relational Quantum Mechanics , 2006 .

[60]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[61]  J. Bub Why the quantum , 2004, quant-ph/0402149.

[62]  On the Decoherence of Primordial Fluctuations During Inflation , 2006, astro-ph/0601646.

[63]  Brian Whitworth,et al.  The emergence of the physical world from information processing , 2010, ArXiv.

[64]  Simon J. Gay,et al.  Quantum Programming Languages Survey and Bibliography , 2006 .

[65]  E. Wigner Remarks on the Mind-Body Question , 1995 .

[66]  Maximilian Schlosshauer,et al.  Experimental motivation and empirical consistency in minimal no-collapse quantum mechanics , 2006 .

[67]  Paul Teller,et al.  Quantum Mechanics: An Empiricist View , 1991 .

[68]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[69]  Guido Bacciagaluppi,et al.  The Role of Decoherence in Quantum Mechanics , 2012 .

[70]  C. Fields,et al.  Autonomy all the way down , 2011 .

[71]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[72]  Simon Perdrix,et al.  Classically controlled quantum computation , 2004, Mathematical Structures in Computer Science.

[73]  John Archibald Wheeler,et al.  Is Physics Legislated by Cosmogony , 1974 .

[74]  R. Feynman Simulating physics with computers , 1999 .

[75]  W. Zurek Environment-induced superselection rules , 1982 .

[76]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[77]  David Poulin,et al.  Environment as a Witness: Selective Proliferation of Information and Emergence of Objectivity in a Quantum Universe , 2004 .

[78]  Max Tegmark Many Worlds in Context , 2009, 0905.2182.

[79]  H. S. Allen The Quantum Theory , 1928, Nature.

[80]  Andrew S. Tanenbaum,et al.  Structured Computer Organization , 1976 .

[81]  The Hardy Experiment in the Transactional Interpretation , 2010, 1006.4902.

[82]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[83]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[84]  Wojciech H. Zurek,et al.  Decoherence, einselection and the existential interpretation (the rough guide) , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[85]  Wojciech H. Zurek,et al.  Probabilities from entanglement, Born's rule p{sub k}= vertical bar {psi}{sub k} vertical bar{sup 2} from envariance , 2005 .

[86]  Rolf Landauer,et al.  Information is a physical entity , 1999 .

[87]  Sandy Lovie How the mind works , 1980, Nature.

[88]  Jaakko Hintikka,et al.  On the Logic of Perception , 1969 .

[89]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[90]  Wojciech Hubert Zurek,et al.  Relative States and the Environment: Einselection, Envariance, Quantum Darwinism, and the Existential Interpretation , 2007, 0707.2832.

[91]  Jae-Weon Lee,et al.  Quantum Mechanics Emerges from Information Theory Applied to Causal Horizons , 2010, 1005.2739.

[92]  S. Kosslyn Image and brain: the resolution of the imagery debate , 1994 .