Finite-difference frequency-domain modeling of viscoacoustic wave propagation in 2D tilted transversely isotropic (TTI) media

A 2D finite-difference, frequency-domain method was developed for modeling viscoacoustic seismic waves in transversely isotropic media with a tilted symmetry axis. The medium is parameterized by the P-wave velocity on the symmetry axis, the density, the attenuation factor, Thomsen’s anisotropic parameters δ and ϵ , and the tilt angle. The finite-difference discretization relies on a parsimonious mixed-grid approach that designs accurate yet spatially compact stencils. The system of linear equations resulting from discretizing the time-harmonic wave equation is solved with a parallel direct solver that computes monochromatic wavefields efficiently for many sources. Dispersion analysis shows that four grid points per P-wavelength provide sufficiently accurate solutions in homogeneous media. The absorbing boundary conditions are perfectly matched layers (PMLs). The kinematic and dynamic accuracy of the method wasassessed with several synthetic examples which illustrate the propagation of S-waves excited at t...

[1]  Mrinal K. Sen,et al.  Global Optimization Methods in Geophysical Inversion , 1995 .

[2]  2D elastic frequency-domain full-waveform inversion for imaging complex onshore structures , 2009 .

[3]  Linbin Zhang,et al.  Shear waves in acoustic anisotropic media , 2004 .

[4]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[5]  C. Shin,et al.  An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .

[6]  John Brittan,et al.  Anisotropy in multi-offset deep-crustal seismic experiments , 1999 .

[7]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[8]  B. Kennett,et al.  Lg-wave propagation in heterogeneous media , 1989 .

[9]  Jean Virieux,et al.  Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: application to a thrust belt , 2004 .

[10]  Jean Virieux,et al.  SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .

[11]  Tariq Alkhalifah,et al.  An acoustic wave equation for anisotropic media , 2000 .

[12]  R. G. Payton,et al.  Elastic Wave Propagation in Transversely Isotropic Media , 1983 .

[13]  I. Štekl,et al.  Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .

[14]  Eric Duveneck,et al.  Acoustic VTI Wave Equations And Their Application For Anisotropic Reverse-time Migration , 2008 .

[15]  R. G. Pratt,et al.  Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data , 2007 .

[16]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[17]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[18]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[19]  Paul J. Fowler,et al.  A New Pseudo-acoustic Wave Equation For TI Media , 2008 .

[20]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[21]  Géza Seriani,et al.  A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media , 1992 .

[22]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[23]  José M. Carcione,et al.  WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID , 1988 .

[24]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 2: Numerical examples and scalability analysis , 2009, Computational Geosciences.

[25]  J. Cela,et al.  3D Reverse-time Migration With Hybrid Finite Difference-pseudospectral Method , 2008 .

[26]  Tariq Alkhalifah,et al.  Acoustic approximations for processing in transversely isotropic media , 1998 .

[27]  S. Shapiro,et al.  Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .

[28]  Guanquan Zhang,et al.  An Anisotropic Acoustic Wave Equation For Modeling And Migration In 2D TTI Media , 2006 .

[29]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 1: Algorithm , 2009, Comput. Geosci..

[30]  Elastic wave propagation in anisotropic crustal material possessing arbitrary internal tilt , 2003 .

[31]  Felix J. Herrmann,et al.  An Iterative Multilevel Method For Computing Wavefields In Frequency-domain Seismic Inversion , 2008 .

[32]  Azzam Haidar,et al.  Frequency-domain Full-waveform Modeling Using a Hybrid Direct-iterative Solver Based On a Parallel Domain Decomposition Method: a Tool For 3D Full-waveform Inversion? , 2008 .

[33]  Peter Hubral Foundations of Anisotropy for Exploration Seismics , 1995 .

[34]  L. Neil Frazer,et al.  Practical aspects of reflectivity modeling , 1987 .

[35]  Jean Virieux,et al.  Numerical Source Implementation in a 2D Finite Difference Scheme for Wave Propagation , 1995 .

[36]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[37]  R. Shipp,et al.  Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data , 1999 .

[38]  Patrick R. Amestoy,et al.  3D Frequency-domain Finite-difference Modeling of Acoustic Wave Propagation Using a Massively Parallel Direct Solver: a Feasibility Study , 2005 .

[39]  Gerard T. Schuster,et al.  Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .

[40]  Data-driven tomographic velocity analysis in tilted transversely isotropic media: A 3D case history from the Canadian Foothills , 2008 .

[41]  L. Thomsen Weak elastic anisotropy , 1986 .

[42]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[43]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[44]  Jean Virieux,et al.  Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data , 2008 .

[45]  S. Operto,et al.  Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling , 2004 .

[46]  K. Helbig Foundations of Anisotropy for Exploration Seismics , 1994 .

[47]  D. Komatitsch,et al.  Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .

[48]  Linbin Zhang,et al.  Finite‐difference modelling of wave propagation in acoustic tilted TI media , 2005 .

[49]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[50]  M. N. Toksoz,et al.  Seismic wave attenuation , 1981 .

[51]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[52]  Ilya Tsvankin,et al.  Seismic Signatures and Analysis of Reflection Data in Anisotropic Media , 2001 .

[53]  Erik H. Saenger,et al.  Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid , 2004 .

[54]  Xiaoye S. Li,et al.  Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD–PSD) , 2007 .

[55]  Azzam Haidar,et al.  Frequency-domain full-waveform modeling using a hybrid direct-iterative solver based on a parallel domain decomposition method: A tool for 3D full-waveform inversion? , 2008 .

[56]  S. Operto,et al.  Mixed-grid Finite-difference Frequency-domain Viscoacoustic Modeling In 2D TTI Anisotropic Media , 2007 .

[57]  L. Sirgue,et al.  3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods , 2008 .