Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations

Abstract. The mid-Holocene (6000 years ago) is a standard time period for the evaluation of the simulated response of global climate models using palaeoclimate reconstructions. The latest mid-Holocene simulations are a palaeoclimate entry card for the Palaeoclimate Model Intercomparison Project (PMIP4) component of the current phase of the Coupled Model Intercomparison Project (CMIP6) – hereafter referred to as PMIP4-CMIP6. Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the Northern Hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of −0.3 K, which is −0.2 K cooler than the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe, and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of emergent constraints on the hydrological cycle, feedback strength, and potentially climate sensitivity.

[1]  P. Dias,et al.  Contrasting Southern Hemisphere Monsoon Response: MidHolocene Orbital Forcing versus Future Greenhouse Gas–Induced Global Warming , 2020, Journal of Climate.

[2]  N. Mahowald,et al.  A Comparison of the CMIP6 midHolocene and lig127k Simulations in CESM2 , 2020, Paleoceanography and Paleoclimatology.

[3]  Zhenghui Xie,et al.  The Flexible Global Ocean‐Atmosphere‐Land System Model Grid‐Point Version 3 (FGOALS‐g3): Description and Evaluation , 2020, Journal of Advances in Modeling Earth Systems.

[4]  Carlos A. Cruz,et al.  GISS‐E2.1: Configurations and Climatology , 2020, Journal of advances in modeling earth systems.

[5]  M. Kawamiya,et al.  PMIP4 experiments using MIROC-ES2L Earth system model , 2020, Geoscientific Model Development.

[6]  S. Bony,et al.  Presentation and Evaluation of the IPSL‐CM6A‐LR Climate Model , 2020, Journal of Advances in Modeling Earth Systems.

[7]  D. Kaufman,et al.  Holocene global mean surface temperature, a multi-method reconstruction approach , 2020, Scientific Data.

[8]  Wei Cheng,et al.  CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation , 2020, Geophysical Research Letters.

[9]  D. Notz,et al.  Arctic Sea Ice in CMIP6 , 2020, Geophysical Research Letters.

[10]  A. Ito,et al.  Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks , 2020, Geoscientific Model Development.

[11]  Stephen Roberts,et al.  A global database of Holocene paleotemperature records , 2020, Scientific Data.

[12]  N. Boivin,et al.  Human responses to climate and ecosystem change in ancient Arabia , 2020, Proceedings of the National Academy of Sciences.

[13]  J. Southon,et al.  Enhanced El Niño–Southern Oscillation Variability in Recent Decades , 2020, Geophysical Research Letters.

[14]  C. Heinze,et al.  The Norwegian Earth System Model, NorESM2 – Evaluation of theCMIP6 DECK and historical simulations , 2020 .

[15]  A. LeGrande,et al.  Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models , 2020, Climate of the Past.

[16]  Michel Rixen,et al.  The CMIP6 Data Request (DREQ, version 01.00.31) , 2020, Geoscientific Model Development.

[17]  J. Franklin,et al.  Climate change and ecosystems: threats, opportunities and solutions , 2020, Philosophical Transactions of the Royal Society B.

[18]  B. Otto‐Bliesner,et al.  Large-scale features of Last Interglacial climate: Results from evaluating the lig127k simulations for CMIP6-PMIP4 , 2020 .

[19]  K. Taylor,et al.  Causes of Higher Climate Sensitivity in CMIP6 Models , 2020, Geophysical Research Letters.

[20]  J. Singarayer,et al.  The UK contribution to CMIP6/PMIP4: mid-Holocene and Last Interglacial experiments with HadGEM3, and comparison to the pre-industrial era and proxy data , 2020 .

[21]  P. Yiou,et al.  AMOC and summer sea ice as key drivers of the spread in mid-holocene winter temperature patterns over Europe in PMIP3 models , 2020, Global and Planetary Change.

[22]  K. Wyser On the increased climate sensitivity in the EC-Earth model from CMIP 5 to CMIP 6 ” by , 2020 .

[23]  Vallet,et al.  The UK contribution to CMIP 6 / PMIP 4 : mid-Holocene and Last 1 Interglacial experiments with HadGEM 3 , and comparison to the pre-2 industrial era and proxy data 3 4 , 2020 .

[24]  Guoxiong Wu,et al.  CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments , 2019, Advances in Atmospheric Sciences.

[25]  J. von Hardenberg,et al.  On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6 , 2019, Geoscientific Model Development.

[26]  S. Jaccard,et al.  Constraining the Variability of the Atlantic Meridional Overturning Circulation During the Holocene , 2019, Geophysical Research Letters.

[27]  A. Ito,et al.  Description of the MIROC-ES2L Earth system model and evaluation of its climate–biogeochemical processes and feedbacks , 2019 .

[28]  Michel Rixen,et al.  The CMIP6 Data Request (version 01.00.31) , 2019 .

[29]  M. Mills,et al.  High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2) , 2019, Geophysical Research Letters.

[30]  M. Yoshimori,et al.  The relevance of mid-Holocene Arctic warming to the future , 2019, Climate of the Past.

[31]  A. Pourmand,et al.  Mid‐Holocene, Coral‐Based Sea Surface Temperatures in the Western Tropical Atlantic , 2019, Paleoceanography and Paleoclimatology.

[32]  H. Tsujino,et al.  The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component , 2019, Journal of the Meteorological Society of Japan. Ser. II.

[33]  P. Braconnot,et al.  Strengths and challenges for transient Mid- to Late Holocene simulations with dynamical vegetation , 2019, Climate of the Past.

[34]  Alexander J. Winkler,et al.  Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2 , 2019, Journal of advances in modeling earth systems.

[35]  C. Brierley,et al.  Half the worlds population already experiences years 1.5°C warmer than preindustrial , 2019 .

[36]  Paul Samuels,et al.  Estimation of uncertainty in flood forecasts—A comparison of methods , 2019, Journal of Flood Risk Management.

[37]  P. Valdes,et al.  On the Role of Dust‐Climate Feedbacks During the Mid‐Holocene , 2019, Geophysical Research Letters.

[38]  J. Jungclaus,et al.  Northern Hemisphere Monsoon Response to Mid‐Holocene Orbital Forcing and Greenhouse Gas‐Induced Global Warming , 2019, Geophysical Research Letters.

[39]  L. Houpert,et al.  A sea change in our view of overturning in the subpolar North Atlantic , 2019, Science.

[40]  M. Bentsen,et al.  Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM) , 2019, Geoscientific Model Development.

[41]  Siti Rahyla Rahmat,et al.  Does climate change only affect food availability? What else matters? , 2019, Cogent Food & Agriculture.

[42]  S. V. Emelina,et al.  Simulation of the modern climate using the INM-CM48 climate model , 2018, Russian Journal of Numerical Analysis and Mathematical Modelling.

[43]  P. Bartlein,et al.  Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis , 2018, Geoscientific Model Development.

[44]  The impact of Arctic sea ice loss on mid-Holocene climate , 2018, Nature Communications.

[45]  R. Kyle Bocinsky,et al.  Climate change stimulated agricultural innovation and exchange across Asia , 2018, Science Advances.

[46]  Tianyu Chen,et al.  Coherent deglacial changes in western Atlantic Ocean circulation , 2018, Nature Communications.

[47]  Neil L. Rose,et al.  Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years , 2018, Nature.

[48]  Michel Crucifix,et al.  The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan , 2018 .

[49]  P. Bartlein,et al.  Reconciling divergent trends and millennial variations in Holocene temperatures , 2018, Nature.

[50]  S. Rahmstorf,et al.  Observed fingerprint of a weakening Atlantic Ocean overturning circulation , 2017, Nature.

[51]  Bin Wang,et al.  The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation , 2017, Geoscientific Model Development.

[52]  I. Wainer,et al.  Inter-annual variability in the tropical Atlantic from the Last Glacial Maximum into future climate projections simulated by CMIP5/PMIP3 , 2017, Climate of the Past.

[53]  T. Andrews,et al.  MOHC HadGEM3-GC31-LL model output prepared for CMIP6 CMIP , 2018 .

[54]  O. Boucher,et al.  IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP , 2018 .

[55]  Michel Crucifix,et al.  The PMIP 4 contribution to CMIP 6 – Part 1 : Overview and overarching analysis plan , 2018 .

[56]  D. N. Walters,et al.  The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations , 2017 .

[57]  S. Guillas,et al.  Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño , 2017 .

[58]  S. Harrison,et al.  Underlying causes of Eurasian midcontinental aridity in simulations of mid‐Holocene climate , 2017, Geophysical research letters.

[59]  W. Peltier,et al.  Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions , 2017 .

[60]  J. Lynch‐Stieglitz The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. , 2017, Annual review of marine science.

[61]  J. Walsh,et al.  A database for depicting Arctic sea ice variations back to 1850 , 2017 .

[62]  Xiaoping Zhou,et al.  The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation , 2017 .

[63]  S. Archer,et al.  Climate Change and Ecosystems , 2019 .

[64]  W. Lipscomb,et al.  The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations , 2016 .

[65]  G. Lohmann,et al.  Simulated response of the mid-Holocene Atlantic meridional overturning circulation in ECHAM6-FESOM/MPIOM , 2016 .

[66]  K. Cobb,et al.  A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution , 2016 .

[67]  S. Harrison,et al.  What have we learnt from palaeoclimate simulations? , 2016 .

[68]  M. Collins,et al.  Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene , 2016 .

[69]  G. Messori,et al.  Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period , 2016 .

[70]  Bengamin I. Moat,et al.  Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2015 , 2016 .

[71]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[72]  G. Huffman,et al.  GPCP Version 2.2 Combined Precipitation Data Set , 2015 .

[73]  M. Kageyama,et al.  Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  S. Barker,et al.  Changes in the strength of the Nordic Seas Overflows over the past 3000 years , 2015 .

[75]  M. Kageyama,et al.  Evaluation of CMIP5 palaeo-simulations to improve climate projections , 2015 .

[76]  S. Rahmstorf,et al.  Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation , 2015 .

[77]  Tim Graham,et al.  Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM , 2015, Climate Dynamics.

[78]  P. Braconnot,et al.  Changes in the ENSO/SPCZ relationship from past to future climates , 2015 .

[79]  D. Jiang,et al.  Mid-Holocene global monsoon area and precipitation from PMIP simulations , 2015, Climate Dynamics.

[80]  J. Schröter,et al.  Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate , 2015, Climate Dynamics.

[81]  C. Deser,et al.  Evaluating Modes of Variability in Climate Models , 2014 .

[82]  Z. Liu,et al.  Evolution and forcing mechanisms of El Niño over the past 21,000 years , 2014, Nature.

[83]  Pascale Braconnot,et al.  Holocene history of ENSO variance and asymmetry in the eastern tropical Pacific , 2014, Science.

[84]  A. Timmermann,et al.  The Holocene temperature conundrum , 2014, Proceedings of the National Academy of Sciences.

[85]  S. Harrison,et al.  Evaluation of modern and mid-Holocene seasonal precipitation of the Mediterranean and northern Africa in the CMIP5 simulations , 2014 .

[86]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[87]  I. Prentice,et al.  Climate model benchmarking with glacial and mid-Holocene climates , 2014, Climate Dynamics.

[88]  D. Jiang,et al.  Mid-Holocene net precipitation changes over China: model–data comparison , 2013 .

[89]  C. Woodroffe,et al.  A weak El Nino/Southern Oscillation with delayed seasonal growth around 4,300 years ago , 2013 .

[90]  I. Wainer,et al.  Mid-Holocene PMIP3/CMIP5 model results: Intercomparison for the South American Monsoon System , 2013 .

[91]  J. Kaplan,et al.  The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison , 2013 .

[92]  H. Renssen,et al.  Long-term variations in Iceland–Scotland overflow strength during the Holocene , 2013 .

[93]  M. Kawamiya,et al.  Can an Earth System Model simulate better climate change at mid-Holocene than an AOGCM? A comparison study of MIROC-ESM and MIROC3 , 2013 .

[94]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[95]  Yangchun Li,et al.  The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2 , 2013, Advances in Atmospheric Sciences.

[96]  Bin Wang,et al.  The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2 , 2013, Advances in Atmospheric Sciences.

[97]  J. Nilsson,et al.  The sensitivity of the Arctic sea ice to orbitally induced insolation changes: a study of the mid-Holocene Paleoclimate Modelling Intercomparison Project 2 and 3 simulations , 2013 .

[98]  S. Jeffrey,et al.  Australia's CMIP5 submission using the CSIRO-Mk3.6 model , 2013 .

[99]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[100]  A. Timmermann,et al.  Using palaeo-climate comparisons to constrain future projections in CMIP5 , 2013 .

[101]  R. Edwards,et al.  Highly Variable El Niño–Southern Oscillation Throughout the Holocene , 2013, Science.

[102]  Li Wei-Ping,et al.  How Well does BCC_CSM1.1 Reproduce the 20th Century Climate Change over China? , 2013 .

[103]  X. Xiao How Well does BCC_CSM1.1 Reproduce the 20th Century Climate Change over China , 2013 .

[104]  Jung Choi,et al.  Mid-Holocene tropical Pacific climate state, annual cycle, and ENSO in PMIP2 and PMIP3 , 2013, Climate Dynamics.

[105]  J. Christensen,et al.  Climate phenomena and their relevance for future regional climate change , 2013 .

[106]  Stephen Jeffrey,et al.  Australia ’ s CMIP 5 submission using the CSIRO-Mk 3 . 6 model , 2013 .

[107]  R. Colman,et al.  The South Pacific Convergence Zone in CMIP5 simulations of historical and future climate , 2013, Climate Dynamics.

[108]  H. Douville,et al.  The CNRM-CM5.1 global climate model: description and basic evaluation , 2013, Climate Dynamics.

[109]  A. Koutavas,et al.  El Niño–Southern Oscillation extrema in the Holocene and Last Glacial Maximum , 2012 .

[110]  M. Kawamiya,et al.  Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM , 2012 .

[111]  J. Annan,et al.  Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene , 2012 .

[112]  Yan Zhao,et al.  Evaluation of climate models using palaeoclimatic data , 2012 .

[113]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[114]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[115]  Klaus Wyser,et al.  EC-Earth V2.2: description and validation of a new seamless earth system prediction model , 2012, Climate Dynamics.

[116]  S. Phipps,et al.  The CSIRO Mk3L climate system model version 1.0 - Part 2: Response to external forcings , 2011 .

[117]  Richard J. Telford,et al.  Dynamics of North Atlantic Deep Water masses during the Holocene , 2011 .

[118]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[119]  Bin Wang,et al.  Diagnostic metrics for evaluation of annual and diurnal cycles , 2011 .

[120]  R. S. Thompson,et al.  Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis , 2011 .

[121]  E. Hawkins,et al.  The potential to narrow uncertainty in projections of regional precipitation change , 2011 .

[122]  J. Whitaker,et al.  The Twentieth Century Reanalysis Project 3 , 2011 .

[123]  Ryouta O’ishi,et al.  Polar amplification in the mid‐Holocene derived from dynamical vegetation change with a GCM , 2011 .

[124]  G. Lohmann,et al.  Evidence for Two Distinct Modes of Large-Scale Ocean Circulation Changes over the Last Century , 2010 .

[125]  Y. Rosenthal,et al.  Holocene evolution of the Indonesian throughflow and the western Pacific warm pool , 2010 .

[126]  William B. Curry,et al.  Florida Straits density structure and transport over the last 8000 years , 2009 .

[127]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[128]  A. Abe‐Ouchi,et al.  The effect of sea surface temperature bias in the PMIP2 AOGCMs on mid-Holocene Asian monsoon enhancement , 2009 .

[129]  P. Chang,et al.  Pacific Climate Change and ENSO Activity in the Mid-Holocene , 2008 .

[130]  Michael G. Bosilovich,et al.  Evaluation of Global Precipitation in Reanalyses , 2008 .

[131]  E. Guilyardi,et al.  ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations , 2008 .

[132]  Yan Zhao,et al.  Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features , 2007 .

[133]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[134]  Daniel S. Wilks,et al.  On “Field Significance” and the False Discovery Rate , 2006 .

[135]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[136]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[137]  P. Braconnot Modéliser le dernier maximum glaciaire et l'Holocène moyen , 2004 .

[138]  M. Gagan,et al.  Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation , 2004 .

[139]  J. McManus,et al.  Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes , 2004, Nature.

[140]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[141]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[142]  M. Schoeberl,et al.  The Earth System Model , 2003 .

[143]  D. Pollard,et al.  A calendar conversion method for monthly mean paleoclimate model output with orbital forcing , 2002 .

[144]  S. Rahmstorf Ocean circulation and climate during the past 120,000 years , 2002, Nature.

[145]  Athanasios Koutavas,et al.  El Niño-Like Pattern in Ice Age Tropical Pacific Sea Surface Temperature , 2002, Science.

[146]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[147]  E. Cook,et al.  Variability in the El Niño-Southern Oscillation Through a Glacial-Interglacial Cycle , 2001, Science.

[148]  R. Seager,et al.  Suppression of El Niño during the Mid‐Holocene by changes in the Earth's orbit , 2000 .

[149]  John E. Kutzbach,et al.  Modeling climate shift of El Nino variability in the Holocene , 2000 .

[150]  P. Jones,et al.  Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate , 2000 .

[151]  Sandy P. Harrison,et al.  How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets , 2000 .

[152]  Sandy P. Harrison,et al.  Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP) , 1999 .

[153]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[154]  Pascale Braconnot,et al.  Sensitivity of paleoclimate simulation results to season definitions , 1997 .

[155]  Robert M. Chervin,et al.  On Determining the Statistical Significance of Climate Experiments with General Circulation Models , 1976 .