Interval Partitions and Polynomial Factorization

The fastest algorithms for factoring a univariate polynomial f of degree n over a finite field use a baby-step/giant-step approach. The set {1,…,n} of potential factor degrees is partitioned into intervals. In a first stage, for each interval the product of all irreducible factors with degree in the interval is determined, generalizing the method of Cantor & Zassenhaus. In a second stage, each polynomial corresponding to a multi-factor interval—containing two or more irreducible factors—is completely factored. The goal in this work is to analyze the behavior of this algorithm on uniformly random squarefree input polynomials, for various partitions. To this end, we study several parameters such as the expected number of multi-factor intervals, the expected number of irreducible factors with degrees lying in multi-factor intervals, the number of gcds executed in the factoring process, the expected total degree among the irreducible factors with degrees in multi-factor intervals, and the probability of a polynomial to have no multi-factor interval. We concentrate on partitions with polynomially growing interval sizes, and determine the partition that minimizes the expected number of gcds.

[1]  BonordenOlaf,et al.  Factoring a binary polynomial of degree over one million , 2001 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  Erich Kaltofen,et al.  Subquadratic-time factoring of polynomials over finite fields , 1998, Math. Comput..

[4]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[5]  Joachim von zur Gathen,et al.  Polynomial factorization over F2 , 2002, Math. Comput..

[6]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[7]  ShoupVictor A new polynomial factorization algorithm and its implementation , 1995 .

[8]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[9]  Richard P. Brent,et al.  A Multi-level Blocking Distinct Degree Factorization Algorithm , 2007, ArXiv.

[10]  Joachim von zur Gathen,et al.  Factoring Polynomials Over Finite Fields: A Survey , 2001, J. Symb. Comput..

[11]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[12]  Joachim von zur Gathen,et al.  Modern Computer Algebra (3. ed.) , 2003 .

[13]  Daniel Panario,et al.  What Do Random Polynomials over Finite Fields Look Like? , 2003, International Conference on Finite Fields and Applications.

[14]  Olaf Bonorden,et al.  Factoring a binary polynomial of degree over one million , 2001, SIGS.

[15]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[16]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[17]  G. Darboux,et al.  Mémoire sur l'approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série. , 1878 .

[18]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[19]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[20]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[21]  Philippe Flajolet,et al.  The Complete Analysis of a Polynomial Factorization Algorithm over Finite Fields , 2001, J. Algorithms.

[22]  Joachim von zur Gathen,et al.  Computing Frobenius maps and factoring polynomials , 2005, computational complexity.

[23]  F. Olver Asymptotics and Special Functions , 1974 .

[24]  Rudolf Lide,et al.  Finite fields , 1983 .

[25]  Christopher Umans,et al.  Fast Modular Composition in any Characteristic , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Victor Shoup,et al.  A New Polynomial Factorization Algorithm and its Implementation , 1995, J. Symb. Comput..

[27]  Joachim von zur Gathen,et al.  Arithmetic and factorization of polynomials over F_2 , 1996, ISSAC 1996.

[28]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[29]  A. Odlyzko Asymptotic enumeration methods , 1996 .

[30]  Philippe Flajolet,et al.  A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics , 2006, Electron. J. Comb..

[31]  R. Graham,et al.  Handbook of Combinatorics , 1995 .