Space Coding in Inferior Premotor Cortex (Area F4): Facts and Speculations

Area F4 is a premotor area which occupies the caudal part of inferior area 6 [see 32]. It’s location is shown in Fig. 1. F4 controls head, face, and arm movements. As shown by Rizzolatti and coworkers, in this area most neurons are bimodal. They have tactile RFs, and corresponding visual RFs extending outward from the tactile fields into the space around the body [20, 22, 37, 38]. The visual field location is independent of eye position and does not change with gaze shifts [22]. Recently, by using a new behavioral paradigm in which during a fixation task monkeys were presented with moving stimuli driven by a robot arm, we studied quantitatively the type of space coding of F4 visual RFs, showing that most of them use a somatocentered frame of reference [16]. Some of these data will be briefly summarized here. New data on the somatosensory, visual and motor properties of F4 neurons will be also presented. The functional properties of F4 neurons and their possible role in coding of space and in motor control will be discussed.

[1]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[3]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[4]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[5]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[6]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[7]  Deepak N. Pandya,et al.  Further observations on corticofrontal connections in the rhesus monkey , 1976, Brain Research.

[8]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses , 1981, Behavioural Brain Research.

[9]  R. Andersen,et al.  The influence of the angle of gaze upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[11]  C. Sherrington Integrative Action of the Nervous System , 1907 .

[12]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[13]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[14]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[15]  W. J. Nowack Neurobiology of Neocortex , 1989, Neurology.

[16]  E. Pflüger Die sensorischen Functionen des Rückenmarks der Wirbelthiere nebst einer neuen Lehre über die Leitungsgesetze der Reflexionen , 2022 .

[17]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[18]  M. Crommelinck,et al.  Physiological and Pathological Aspects of Eye Movements , 1982, Documenta Ophthalmologica Proceedings Series.

[19]  M. Crommelinck,et al.  The Relation of Neck Muscles Activity to Horizontal Eye Position in the Alert Cat. II: Head Free , 1982 .

[20]  M. Jeannerod Neurophysiological and neuropsychological aspects of spatial neglect. , 1987 .

[21]  R. Short,et al.  Breast feeding, birth spacing and their effects on child survival , 1988, Nature.

[22]  O. I. Fukson,et al.  The spinal frog takes into account the scheme of its body during the wiping reflex. , 1980, Science.

[23]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[24]  C. Gross,et al.  The representation of extrapersonal space: A possible role for bimodal, visual-tactile neurons , 1995 .

[25]  Emilio Bizzi,et al.  Modular organization of motor behavior in the frog's spinal cord , 1995, Trends in Neurosciences.

[26]  R. Andersen Visual and eye movement functions of the posterior parietal cortex. , 1989, Annual review of neuroscience.

[27]  G. Rizzolatti,et al.  Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses , 1981, Behavioural Brain Research.

[28]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[29]  O. I. Fukson,et al.  Adaptability of innate motor patterns and motor control mechanisms , 1986, Behavioral and Brain Sciences.

[30]  D. Humphrey,et al.  Motor control : concepts and issues , 1991 .

[31]  J. F. Soechting,et al.  Early stages in a sensorimotor transformation , 1992, Behavioral and Brain Sciences.

[32]  M. Goldberg,et al.  Representation of visuomotor space in the parietal lobe of the monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[33]  M. Kawato Optimization and learning in neural networks for formation and control of coordinated movement , 1993 .

[34]  G. Rizzolatti,et al.  Neural Circuits for Spatial Attention and Unilateral Neglect , 1987 .

[35]  J. Stein The representation of egocentric space in the posterior parietal cortex. , 1992, The Behavioral and brain sciences.