Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations
暂无分享,去创建一个
[1] Owe Axelsson,et al. On the sublinear and superlinear rate of convergence of conjugate gradient methods , 2000, Numerical Algorithms.
[2] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[3] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[4] Petr Tichý,et al. On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.
[5] D. A. Flanders,et al. Numerical Determination of Fundamental Modes , 1950 .
[6] Serena Morigi,et al. An iterative method with error estimators , 2001 .
[7] O. Axelsson. Iterative solution methods , 1995 .
[8] I︠u︡. V. Vorobʹev. Method of moments in applied mathematics , 1965 .
[9] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[10] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[11] L. Richardson. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .
[12] Valeria Simoncini,et al. An Optimal Iterative Solver for Symmetric Indefinite Systems Stemming from Mixed Approximation , 2010, TOMS.
[13] R. Hettich. Semi-infinite programming : proceedings of a workshop, Bad Honnef, August 30-September 1, 1978 , 1979 .
[14] P. Toint,et al. Linearizing the Method of Conjugate Gradients by , 2012 .
[15] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[16] H. V. D. Vorst,et al. Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆ , 1981 .
[17] C. Lanczos. Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.
[18] E. Stiefel,et al. Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems , 1959 .
[19] G. Golub,et al. Bounds for the error of linear systems of equations using the theory of moments , 1972 .
[20] C. Brezinski,et al. Error Estimates for the Solution of Linear Systems , 1999, SIAM J. Sci. Comput..
[21] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[22] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[23] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[24] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[25] Claude Brezinski,et al. Projection methods for systems of equations , 1997 .
[26] Thomas A. Manteuffel,et al. On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .
[27] O. Nevanlinna. Convergence of Iterations for Linear Equations , 1993 .
[28] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[29] O. Axelsson. A class of iterative methods for finite element equations , 1976 .
[30] Yvan Notay,et al. On the convergence rate of the conjugate gradients in presence of rounding errors , 1993 .
[31] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[32] David M. Young,et al. On Richardson's Method for Solving Linear Systems with Positive Definite Matrices , 1953 .
[33] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[34] Daniel A. Spielman,et al. A Note on Preconditioning by Low-Stretch Spanning Trees , 2009, ArXiv.
[35] A. Markoff,et al. Démonstration de certaines inégalités de M. Tchébychef , 1884 .
[36] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[37] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[38] Shlomo Engelberg,et al. A note on conjugate gradient convergence – Part II , 2000, Numerische Mathematik.
[39] A. Jennings. Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .
[40] P. Deuflhard. Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .
[41] Germund Dahlquist,et al. Numerical Methods in Scientific Computing: Volume 1 , 2008 .
[42] Germund Dahlquist,et al. Numerical methods in scientific computing , 2008 .
[43] Marco A. López,et al. Semi-infinite programming , 2007, Eur. J. Oper. Res..
[44] G. Meurant. The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .
[45] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[46] Serena Morigi,et al. Computable error bounds and estimates for the conjugate gradient method , 2000, Numerical Algorithms.
[47] Owe Axelsson. OPTIMAL PRECONDITIONERS BASED ON RATE OF CONVERGENCE ESTIMATES FOR THE CONJUGATE GRADIENT METHOD , 2001 .
[48] E. Tyrtyshnikov. A brief introduction to numerical analysis , 1997 .
[49] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[50] M. Arioli,et al. Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .
[51] O. Axelsson,et al. On the eigenvalue distribution of a class of preconditioning methods , 1986 .
[52] Z. Strakos,et al. On the real convergence rate of the conjugate gradient method , 1991 .
[53] Kent-André Mardal,et al. Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..
[54] Joseph Y. Halpern. A Computing Research Repository , 1998, D Lib Mag..
[55] Arno B. J. Kuijlaars,et al. Superlinear CG convergence for special right-hand sides , 2002 .
[56] Gérard Meurant,et al. On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.
[57] Serge Gratton,et al. Differentiating the Method of Conjugate Gradients , 2014, SIAM J. Matrix Anal. Appl..
[58] Anil V. Rao,et al. Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.
[59] Ralf Hiptmair,et al. Operator Preconditioning , 2006, Comput. Math. Appl..
[60] Owe Axelsson,et al. Equivalent operator preconditioning for elliptic problems , 2009, Numerical Algorithms.
[61] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[62] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[63] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[64] J. Daniel. The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .
[65] R. Winther. Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .
[66] Arno B. J. Kuijlaars,et al. On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .