Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations

The conjugate gradient method (CG) for solving linear systems of algebraic equations represents a highly nonlinear finite process. Since the original paper of Hestenes and Stiefel published in 1952, it has been linked with the Gauss-Christoffel quadrature approximation of Riemann-Stieltjes distribution functions determined by the data, i.e., with a simplified form of the Stieltjes moment problem. This link, developed further by Vorobyev, Brezinski, Golub, Meurant and others, indicates that a general description of the CG rate of convergence using an asymptotic convergence factor has principal limitations. Moreover, CG is computationally based on short recurrences. In finite precision arithmetic its behaviour is therefore affected by a possible loss of orthogonality among the computed direction vectors. Consequently, any consideration concerning the CG rate of convergence relevant to practical computations must include analysis of effects of rounding errors. Through the example of composite convergence bounds based on Chebyshev polynomials, this paper argues that the facts mentioned above should become a part of common considerations on the CG rate of convergence. It also explains that the spectrum composed of small number of well separated tight clusters of eigenvalues does not necessarily imply a fast convergence of CG or other Krylov subspace methods.

[1]  Owe Axelsson,et al.  On the sublinear and superlinear rate of convergence of conjugate gradient methods , 2000, Numerical Algorithms.

[2]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[3]  C. Paige Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .

[4]  Petr Tichý,et al.  On sensitivity of Gauss–Christoffel quadrature , 2007, Numerische Mathematik.

[5]  D. A. Flanders,et al.  Numerical Determination of Fundamental Modes , 1950 .

[6]  Serena Morigi,et al.  An iterative method with error estimators , 2001 .

[7]  O. Axelsson Iterative solution methods , 1995 .

[8]  I︠u︡. V. Vorobʹev Method of moments in applied mathematics , 1965 .

[9]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[10]  Anne Greenbaum,et al.  Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..

[11]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[12]  Valeria Simoncini,et al.  An Optimal Iterative Solver for Symmetric Indefinite Systems Stemming from Mixed Approximation , 2010, TOMS.

[13]  R. Hettich Semi-infinite programming : proceedings of a workshop, Bad Honnef, August 30-September 1, 1978 , 1979 .

[14]  P. Toint,et al.  Linearizing the Method of Conjugate Gradients by , 2012 .

[15]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[16]  H. V. D. Vorst,et al.  Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆ , 1981 .

[17]  C. Lanczos Chebyshev polynomials in the solution of large-scale linear systems , 1952, ACM '52.

[18]  E. Stiefel,et al.  Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems , 1959 .

[19]  G. Golub,et al.  Bounds for the error of linear systems of equations using the theory of moments , 1972 .

[20]  C. Brezinski,et al.  Error Estimates for the Solution of Linear Systems , 1999, SIAM J. Sci. Comput..

[21]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[22]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[23]  G. Golub,et al.  Bounds for the error in linear systems , 1979 .

[24]  Zdenek Strakos,et al.  Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..

[25]  Claude Brezinski,et al.  Projection methods for systems of equations , 1997 .

[26]  Thomas A. Manteuffel,et al.  On the theory of equivalent operators and application to the numerical solution of uniformly elliptic partial differential equations , 1990 .

[27]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[28]  Z. Strakos,et al.  Error Estimation in Preconditioned Conjugate Gradients , 2005 .

[29]  O. Axelsson A class of iterative methods for finite element equations , 1976 .

[30]  Yvan Notay,et al.  On the convergence rate of the conjugate gradients in presence of rounding errors , 1993 .

[31]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[32]  David M. Young,et al.  On Richardson's Method for Solving Linear Systems with Positive Definite Matrices , 1953 .

[33]  Arno B. J. Kuijlaars,et al.  Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..

[34]  Daniel A. Spielman,et al.  A Note on Preconditioning by Low-Stretch Spanning Trees , 2009, ArXiv.

[35]  A. Markoff,et al.  Démonstration de certaines inégalités de M. Tchébychef , 1884 .

[36]  A. Greenbaum Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .

[37]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[38]  Shlomo Engelberg,et al.  A note on conjugate gradient convergence – Part II , 2000, Numerische Mathematik.

[39]  A. Jennings Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .

[40]  P. Deuflhard Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .

[41]  Germund Dahlquist,et al.  Numerical Methods in Scientific Computing: Volume 1 , 2008 .

[42]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[43]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[44]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[45]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[46]  Serena Morigi,et al.  Computable error bounds and estimates for the conjugate gradient method , 2000, Numerical Algorithms.

[47]  Owe Axelsson OPTIMAL PRECONDITIONERS BASED ON RATE OF CONVERGENCE ESTIMATES FOR THE CONJUGATE GRADIENT METHOD , 2001 .

[48]  E. Tyrtyshnikov A brief introduction to numerical analysis , 1997 .

[49]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[50]  M. Arioli,et al.  Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .

[51]  O. Axelsson,et al.  On the eigenvalue distribution of a class of preconditioning methods , 1986 .

[52]  Z. Strakos,et al.  On the real convergence rate of the conjugate gradient method , 1991 .

[53]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[54]  Joseph Y. Halpern A Computing Research Repository , 1998, D Lib Mag..

[55]  Arno B. J. Kuijlaars,et al.  Superlinear CG convergence for special right-hand sides , 2002 .

[56]  Gérard Meurant,et al.  On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.

[57]  Serge Gratton,et al.  Differentiating the Method of Conjugate Gradients , 2014, SIAM J. Matrix Anal. Appl..

[58]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[59]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[60]  Owe Axelsson,et al.  Equivalent operator preconditioning for elliptic problems , 2009, Numerical Algorithms.

[61]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[62]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[63]  C. Paige Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .

[64]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[65]  R. Winther Some Superlinear Convergence Results for the Conjugate Gradient Method , 1980 .

[66]  Arno B. J. Kuijlaars,et al.  On The Sharpness of an Asymptotic Error Estimate for Conjugate Gradients , 2001 .