Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry

[1]  A. Cazenave,et al.  Contributions of Altimetry and Argo to Non‐Closure of the Global Mean Sea Level Budget Since 2016 , 2021, Geophysical Research Letters.

[2]  N. Sneeuw,et al.  Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis , 2021, Journal of Geophysical Research: Solid Earth.

[3]  A. Cazenave,et al.  Analysis of the interannual variability in satellite gravity solutions : impact of climate modes on water mass displacements across continents and oceans , 2021 .

[4]  P. Bates,et al.  Re-assessing global water storage trends from GRACE time series , 2020 .

[5]  A. Cazenave,et al.  Global Ocean Mass Change From GRACE and GRACE Follow‐On and Altimeter and Argo Measurements , 2020, Geophysical Research Letters.

[6]  F. Flechtner,et al.  Gravitationally Consistent Mean Barystatic Sea Level Rise From Leakage‐Corrected Monthly GRACE Data , 2020, Journal of Geophysical Research: Solid Earth.

[7]  R. Ponte,et al.  How Salty Is the Global Ocean: Weighing It All or Tasting It a Sip at a Time? , 2020, Geophysical Research Letters.

[8]  Serge Le Reste,et al.  Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats , 2020, Frontiers in Marine Science.

[9]  I. Sasgen,et al.  Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites , 2020, Communications Earth & Environment.

[10]  Henryk Dobslaw,et al.  Quantifying the Central European Droughts in 2018 and 2019 With GRACE Follow‐On , 2020, Geophysical Research Letters.

[11]  B. Chao,et al.  Variation of the equatorial moments of inertia associated with a 6-year westward rotary motion in the Earth , 2020 .

[12]  E. Okal,et al.  GRACE gravitational measurements of tsunamis after the 2004, 2010, and 2011 great earthquakes , 2020, Journal of Geodesy.

[13]  Zhigui Kang,et al.  Extending the Global Mass Change Data Record: GRACE Follow‐On Instrument and Science Data Performance , 2020, Geophysical Research Letters.

[14]  Torsten Mayer-Gürr,et al.  International Combination Service for Time-Variable Gravity Fields (COST-G) , 2020, International Association of Geodesy Symposia.

[15]  V. Mishra,et al.  Anthropogenic and Climate Contributions on the Changes in Terrestrial Water Storage in India , 2020, Journal of Geophysical Research: Atmospheres.

[16]  S. Swenson,et al.  Continuity of the Mass Loss of the World's Glaciers and Ice Caps From the GRACE and GRACE Follow‐On Missions , 2020, Geophysical Research Letters.

[17]  F. Landerer,et al.  Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow‐On Missions , 2020, Geophysical Research Letters.

[18]  Michael Bevis,et al.  Months-long thousand-kilometre-scale wobbling before great subduction earthquakes , 2020, Nature.

[19]  Jianli Chen,et al.  Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change from GRACE , 2020, Remote. Sens..

[20]  The Imbie Team Mass balance of the Greenland Ice Sheet from 1992 to 2018 , 2020 .

[21]  I. Velicogna,et al.  Self‐Consistent Ice Mass Balance and Regional Sea Level From Time‐Variable Gravity , 2020, Earth and Space Science.

[22]  Scott B. Luthcke,et al.  Replacing GRACE/GRACE‐FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change , 2020, Geophysical Research Letters.

[23]  L. Sjöberg,et al.  Quantifying barystatic sea-level change from satellite altimetry, GRACE and Argo observations over 2005–2016 , 2020 .

[24]  C. Ndehedehe,et al.  Identifying the footprints of global climate modes in time-variable gravity hydrological signals , 2019, Climatic Change.

[25]  Eric Rignot,et al.  Mass balance of the Greenland Ice Sheet from 1992 to 2018 , 2019, Nature.

[26]  B. Tapley,et al.  Improved Quantification of Global Mean Ocean Mass Change Using GRACE Satellite Gravimetry Measurements , 2019, Geophysical Research Letters.

[27]  B. Meyssignac,et al.  Global ocean freshening, ocean mass increase and global mean sea level rise over 2005–2015 , 2019, Scientific Reports.

[28]  Shin‐Chan Han,et al.  Determination of ellipsoidal surface mass change from GRACE time-variable gravity data , 2019, Geophysical Journal International.

[29]  Roland Klees,et al.  Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results , 2019, Geosciences.

[30]  A. Huete,et al.  Multi-climate mode interactions drive hydrological and vegetation responses to hydroclimatic extremes in Australia , 2019, Remote Sensing of Environment.

[31]  Grzegorz Michalak,et al.  The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment , 2019, Remote. Sens..

[32]  Jianli Chen,et al.  Satellite gravimetry and mass transport in the earth system , 2019, Geodesy and Geodynamics.

[33]  Beate Klinger,et al.  ITSG‐Grace2018: Overview and Evaluation of a New GRACE‐Only Gravity Field Time Series , 2019, Journal of Geophysical Research: Solid Earth.

[34]  Z. Kundzewicz,et al.  Climate Variability and Floods—A global Review , 2019, Water.

[35]  S. Luthcke,et al.  Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass‐Driven Sea Level Rise , 2019, Geophysical Research Letters.

[36]  V. Barletta,et al.  GRACE constraints on Earth rheology of the Barents Sea and Fennoscandia , 2019, Solid Earth.

[37]  J. Gregory,et al.  Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global , 2019, Surveys in Geophysics.

[38]  Frank Flechtner,et al.  Contributions of GRACE to understanding climate change , 2019, Nature Climate Change.

[39]  D. MacLeod,et al.  The El Niño event of 2015–2016: climate anomalies and their impact on groundwater resources in East and Southern Africa , 2019, Hydrology and Earth System Sciences.

[40]  B. Chao,et al.  Gravity Changes Due to Large Earthquakes Detected in GRACE Satellite Data via Empirical Orthogonal Function Analysis , 2019, Journal of Geophysical Research: Solid Earth.

[41]  J. Kusche,et al.  Processing Choices Affect Ocean Mass Estimates From GRACE , 2019, Journal of Geophysical Research: Oceans.

[42]  J. Tomasella,et al.  The spatio-temporal variability of groundwater storage in the Amazon River Basin , 2019, Advances in Water Resources.

[43]  Ingo Sasgen,et al.  High-Resolution Mass Trends of the Antarctic Ice Sheet through a Spectral Combination of Satellite Gravimetry and Radar Altimetry Observations , 2019, Remote. Sens..

[44]  Shin‐Chan Han,et al.  Sea Level Rise in the Samoan Islands Escalated by Viscoelastic Relaxation After the 2009 Samoa‐Tonga Earthquake , 2018, Journal of Geophysical Research: Solid Earth.

[45]  Florian Seitz,et al.  Mass-related excitation of polar motion: an assessment of the new RL06 GRACE gravity field models , 2018, Earth, Planets and Space.

[46]  R. Gross,et al.  Earth’s Subdecadal Angular Momentum Balance from Deformation and Rotation Data , 2018, Scientific Reports.

[47]  E. Gloor,et al.  Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation , 2018, Science Advances.

[48]  Eric Rignot,et al.  Global sea-level budget 1993–present , 2018, Earth System Science Data.

[49]  B. Chao,et al.  A 6-year westward rotary motion in the Earth: Detection and possible MICG coupling mechanism , 2018, Earth and Planetary Science Letters.

[50]  이지형 Data Driven Approach의 시대 , 2018 .

[51]  S. Seneviratne,et al.  Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage , 2018, Nature.

[52]  A. Cazenave,et al.  Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets , 2018, Geophysical Journal International.

[53]  J. Lemoine,et al.  Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data , 2018, Nature Geoscience.

[54]  Ki-Weon Seo,et al.  Global sea level change signatures observed by GRACE satellite gravimetry , 2018, Scientific Reports.

[55]  J. Avouac,et al.  Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation , 2018 .

[56]  Pavel Ditmar,et al.  Conversion of time-varying Stokes coefficients into mass anomalies at the Earth’s surface considering the Earth’s oblateness , 2018, Journal of Geodesy.

[57]  D Masters,et al.  Climate-change–driven accelerated sea-level rise detected in the altimeter era , 2018, Proceedings of the National Academy of Sciences.

[58]  Donald F. Argus,et al.  Comment on “An Assessment of the ICE‐6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al. , 2018 .

[59]  R. Reedy,et al.  Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data , 2018, Proceedings of the National Academy of Sciences.

[60]  H. Fok,et al.  Application of ENSO and Drought Indices for Water Level Reconstruction and Prediction: A Case Study in the Lower Mekong River Estuary , 2018 .

[61]  Joanna Pardoe,et al.  Hydrological Response and Complex Impact Pathways of the 2015/2016 El Niño in Eastern and Southern Africa , 2018 .

[62]  Xiaogong Hu,et al.  Ellipsoidal Correction in GRACE Surface Mass Change Estimation , 2017 .

[63]  Nico Sneeuw,et al.  A Data‐Driven Approach for Repairing the Hydrological Catchment Signal Damage Due to Filtering of GRACE Products , 2017 .

[64]  R. König,et al.  A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06 , 2017 .

[65]  J. Awange,et al.  Climate teleconnections influence on West Africa's terrestrial water storage , 2017 .

[66]  Jianli Chen,et al.  Long-Term Water Storage Changes of Lake Volta from GRACE and Satellite Altimetry and Connections with Regional Climate , 2017, Remote. Sens..

[67]  H. Dieng,et al.  New estimate of the current rate of sea level rise from a sea level budget approach , 2017 .

[68]  B. D. Tapley,et al.  Long‐term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements , 2017 .

[69]  W. Dorigo,et al.  A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset , 2016 .

[70]  J. Kusche,et al.  A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data , 2016 .

[71]  Pavel Ditmar,et al.  Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models , 2016 .

[72]  Srinivas Bettadpur,et al.  High‐resolution CSR GRACE RL05 mascons , 2016 .

[73]  M. Watkins,et al.  Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution , 2016 .

[74]  K. Seo,et al.  Spurious barometric pressure acceleration in Antarctica and propagation into GRACE Antarctic mass change estimates , 2016 .

[75]  Jin Li,et al.  Topographic effects on coseismic gravity change for the 2011 Tohoku‐Oki earthquake and comparison with GRACE , 2016 .

[76]  Rongjiang Wang,et al.  Improved source parameter constraints for five undersea earthquakes from north component of GRACE gravity and gravity gradient change measurements , 2016 .

[77]  Shin‐Chan Han,et al.  Postseismic gravity change after the 2006–2007 great earthquake doublet and constraints on the asthenosphere structure in the central Kuril Islands , 2016, Geophysical research letters.

[78]  J. Fasullo,et al.  Are GRACE-era Terrestrial Water Trends Driven by Anthropogenic Climate Change? , 2016 .

[79]  A. D. Roo,et al.  Global evaluation of runoff from ten state-of-the-art hydrological models , 2016 .

[80]  J. Ries,et al.  Broadband assessment of degree‐2 gravitational changes from GRACE and other estimates, 2002–2015 , 2016 .

[81]  J. Famiglietti,et al.  A decade of sea level rise slowed by climate-driven hydrology , 2016, Science.

[82]  Annette Eicker,et al.  Satellites provide the big picture , 2015, Science.

[83]  Riccardo E. M. Riva,et al.  Postseismic GRACE and GPS observations indicate a rheology contrast above and below the Sumatra slab , 2015 .

[84]  Wenke Sun,et al.  An increase in the rate of global mean sea level rise since 2010 , 2015 .

[85]  Zizhan Zhang,et al.  Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica , 2015, Journal of Geodesy.

[86]  W. van der Wal,et al.  GRACE gravity observations constrain Weichselian ice thickness in the Barents Sea , 2015 .

[87]  Agus Santoso,et al.  Increased frequency of extreme La Niña events under greenhouse warming , 2015 .

[88]  J. Avouac,et al.  Postseismic Deformation Following the 2010 $$M = 7.2$$M=7.2 El Mayor-Cucapah Earthquake: Observations, Kinematic Inversions, and Dynamic Models , 2015, Pure and Applied Geophysics.

[89]  Sergei Rudenko,et al.  Improved Sea Level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project , 2015 .

[90]  J. Gurdak,et al.  Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO , 2014 .

[91]  J. Willis,et al.  Deep-ocean contribution to sea level and energy budget not detectable over the past decade , 2014 .

[92]  M. Kummu,et al.  Strong influence of El Niño Southern Oscillation on flood risk around the world , 2014, Proceedings of the National Academy of Sciences.

[93]  K. Heki,et al.  Long‐ and short‐term postseismic gravity changes of megathrust earthquakes from satellite gravimetry , 2014 .

[94]  X. Fettweis,et al.  Greenland Ice sheet [in "State of the Climate in 2013"] , 2014 .

[95]  Frédérique Seyler,et al.  Low‐water maps of the groundwater table in the central Amazon by satellite altimetry , 2014 .

[96]  Rongjiang Wang,et al.  Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes , 2014 .

[97]  Nick Rayner,et al.  EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates , 2013 .

[98]  Louise Sandberg Sørensen,et al.  Scatter of mass changes estimates at basin scale for Greenland and Antarctica , 2013 .

[99]  J. Fasullo,et al.  Australia's unique influence on global sea level in 2010–2011 , 2013 .

[100]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[101]  O. de Viron,et al.  Characterization and implications of intradecadal variations in length of day , 2013, Nature.

[102]  Byron D. Tapley,et al.  Contribution of ice sheet and mountain glacier melt to recent sea level rise , 2013 .

[103]  Isabella Velicogna,et al.  Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data , 2013 .

[104]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[105]  W. Feng,et al.  Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground‐based measurements , 2013 .

[106]  R. Clayton,et al.  Topographic Core-Mantle Coupling and Fluctuations in the Earth's Rotation , 2013 .

[107]  T. Eubanks Variations in the Orientation of the Earth , 2013 .

[108]  Shin-Chan Han,et al.  Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields , 2013 .

[109]  I. Fukumori,et al.  Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010 , 2013 .

[110]  R. Sabadini,et al.  Gravitational seismology retrieving Centroid‐Moment‐Tensor solution of the 2011 Tohoku earthquake , 2013 .

[111]  C. Shum,et al.  Gravitational gradient changes following the 2004 December 26 Sumatra–Andaman Earthquake inferred from GRACE , 2012 .

[112]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[113]  R. Steven Nerem,et al.  The 2011 La Niña: So strong, the oceans fell , 2012 .

[114]  H. Steffen,et al.  Optimal locations for absolute gravity measurements and sensitivity of GRACE observations for constraining glacial isostatic adjustment on the northern hemisphere , 2012 .

[115]  Ingo Sasgen,et al.  Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland , 2012 .

[116]  K. Heki,et al.  Anomalous precipitation signatures of the Arctic Oscillation in the time‐variable gravity field by GRACE , 2012 .

[117]  J. Ray,et al.  Geocenter motion and its geodetic and geophysical implications , 2012 .

[118]  Chung-Yen Kuo,et al.  Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations , 2012 .

[119]  Kelin Wang,et al.  Deformation cycles of subduction earthquakes in a viscoelastic Earth , 2012, Nature.

[120]  B. Scanlon,et al.  Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA , 2012 .

[121]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[122]  C. Shum,et al.  Coseismic and postseismic deformation of the 2011 Tohoku‐Oki earthquake constrained by GRACE gravimetry , 2012 .

[123]  Oliver Baur,et al.  Contribution of satellite laser ranging to combined gravity field models , 2012 .

[124]  J. Kusche,et al.  Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment , 2011 .

[125]  A. Cazenave,et al.  Steric sea level variations over 2004–2010 as a function of region and depth: Inference on the mass component variability in the North Atlantic Ocean , 2011 .

[126]  Rongjiang Wang,et al.  Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake , 2011 .

[127]  Robert F. Adler,et al.  Precipitation and Temperature Variations on the Interannual Time Scale: Assessing the Impact of ENSO and Volcanic Eruptions , 2011 .

[128]  B. Meyssignac,et al.  Regional distribution of steric and mass contributions to sea level changes , 2011 .

[129]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[130]  Koji Matsuo,et al.  Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry , 2010 .

[131]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[132]  Rongjiang Wang,et al.  Gravity changes due to the Sumatra-Andaman and Nias earthquakes as detected by the GRACE satellites: a reexamination , 2010 .

[133]  H. Steffen,et al.  Determination of the Earth's structure in Fennoscandia from GRACE and implications for the optimal post-processing of GRACE data , 2010 .

[134]  Fred F. Pollitz,et al.  Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake , 2010 .

[135]  Bob E. Schutz,et al.  Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data , 2009 .

[136]  V. M. Tiwari,et al.  Dwindling groundwater resources in northern India, from satellite gravity observations , 2009 .

[137]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[138]  Dean Roemmich,et al.  The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program , 2009 .

[139]  B. Tapley,et al.  2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models , 2009 .

[140]  J. Kusche,et al.  Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model , 2009 .

[141]  Richard Biancale,et al.  Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation , 2009 .

[142]  Chen Ji,et al.  Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data , 2008 .

[143]  Hubert H. G. Savenije,et al.  The design of an optimal filter for monthly GRACE gravity models , 2008 .

[144]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[145]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[146]  Georg Dresen,et al.  Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations , 2008 .

[147]  E. Schrama,et al.  Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics , 2007 .

[148]  Byron D. Tapley,et al.  Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE) , 2007 .

[149]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[150]  John M. Wahr,et al.  Multi‐sensor analysis of water storage variations of the Caspian Sea , 2007 .

[151]  Byron D. Tapley,et al.  GRACE detects coseismic and postseismic deformation from the Sumatra‐Andaman earthquake , 2007 .

[152]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[153]  K. Heki,et al.  Slow postseismic recovery of geoid depression formed by the 2004 Sumatra‐Andaman Earthquake by mantle water diffusion , 2007 .

[154]  Archie Paulson,et al.  Limitations on the inversion for mantle viscosity from postglacial rebound , 2007 .

[155]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[156]  Chen Ji,et al.  Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake , 2006, Science.

[157]  B. Tapley,et al.  Antarctic mass rates from GRACE , 2006 .

[158]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[159]  B. Buffett,et al.  Detection of a gravitational oscillation in length-of-day , 2006 .

[160]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[161]  Matthew Rodell,et al.  Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2005 .

[162]  Benjamin F. Chao,et al.  On inversion for mass distribution from global (time-variable) gravity field , 2005 .

[163]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[164]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[165]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[166]  Jean-François Crétaux,et al.  Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data , 2002 .

[167]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[168]  B. Chao,et al.  Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998 , 2002, Science.

[169]  Charles J Vörösmarty,et al.  Widespread decline in hydrological monitoring threatens Pan-Arctic Research , 2002 .

[170]  T. Wigley,et al.  Global patterns of ENSO‐induced precipitation , 2000 .

[171]  Matthew Rodell,et al.  Detectability of variations in continental water storage from satellite observations of the time dependent gravity field , 1999 .

[172]  Byron D. Tapley,et al.  Seasonal variations in low degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations , 1999 .

[173]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[174]  S. King The viscosity structure of the mantle , 1995 .

[175]  P. Tavella,et al.  A revisited three-cornered hat method for estimating frequency standard instability , 1993 .

[176]  C. Ropelewski,et al.  Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation , 1987 .

[177]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[178]  Xiaogong Hu,et al.  Global Terrestrial Water Storage Changes and Connections to ENSO Events , 2017, Surveys in Geophysics.

[179]  Anny Cazenave,et al.  Evaluation of the Global Mean Sea Level Budget between 1993 and 2014 , 2016, Surveys in Geophysics.

[180]  Nico Sneeuw,et al.  On the Spatial Resolution of Homogeneous Isotropic Filters on the Sphere , 2015 .

[181]  Minkang Cheng,et al.  Variations of the Earth's figure axis from satellite laser ranging and GRACE , 2011 .

[182]  Shigeki Hosoda,et al.  A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations , 2008 .

[183]  L. P. Pellinen Physical Geodesy , 1972 .

[184]  W. M. Kaula Theory of satellite geodesy , 1966 .