Earliest Resolution to the Neutrino Mass Ordering

We hereby illustrate and numerically demonstrate via a simplified proof of concept calculation tuned to the latest average neutrino global data that the combined sensitivity of JUNO with NOvA and T2K experiments has the potential to be the first fully resolved ($\geq$5$\sigma$) measurement of neutrino Mass Ordering (MO) around 2028; tightly linked to the JUNO schedule. Our predictions account for the key ambiguities and the most relevant $\pm$1$\sigma$ data fluctuations. In the absence of any concrete MO theoretical prediction and given its intrinsic binary outcome, we highlight the benefits of having such a resolved measurement in the light of the remarkable MO resolution ability of the next generation of long baseline neutrino beams experiments. We motivate the opportunity of exploiting the MO experimental framework to scrutinise the standard oscillation model, thus, opening for unique discovery potential, should unexpected discrepancies manifest. Phenomenologically, the deepest insight relies on the articulation of MO resolved measurements via at least the two possible methodologies matter effects and purely vacuum oscillations. Thus, we argue that the JUNO vacuum MO measurement may feasibly yield full resolution in combination to the next generation of long baseline neutrino beams experiments.

[1]  A. Falcone,et al.  Deep underground neutrino experiment: DUNE , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[2]  T. Schwetz,et al.  The fate of hints: updated global analysis of three-flavor neutrino oscillations , 2020, Journal of High Energy Physics.

[3]  K. Kelly,et al.  Neutrino mass ordering in light of recent data , 2020, 2007.08526.

[4]  O. Mena,et al.  2020 global reassessment of the neutrino oscillation picture , 2020, Journal of High Energy Physics.

[5]  C. Cerna,et al.  TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution , 2020, 2005.08745.

[6]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.

[7]  P. Backes,et al.  Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU , 2019, Physical Review D.

[8]  M. Hartz,et al.  Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations. , 2019, 1910.03887.

[9]  The Double Chooz Collaboration Double Chooz θ13 measurement via total neutron capture detection , 2019, 1901.09445.

[10]  Michele Maltoni,et al.  Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering , 2018, Journal of High Energy Physics.

[11]  Chang Wei Loh,et al.  Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay. , 2018, Physical review letters.

[12]  J. H. Kim,et al.  Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO. , 2018, Physical review letters.

[13]  J.Coleman,et al.  Hyper-Kamiokande Design Report , 2018, 1805.04163.

[14]  A. Palazzo,et al.  Current unknowns in the three-neutrino framework , 2018, Progress in Particle and Nuclear Physics.

[15]  F. S. Cafagna,et al.  Physics potentials with the second Hyper-Kamiokande detector in Korea , 2016, Progress of Theoretical and Experimental Physics.

[16]  V. S. Subrahmanyam,et al.  Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) , 2015, 1505.07380.

[17]  T. Schwetz,et al.  Cosmology and the neutrino mass ordering , 2016, 1606.04691.

[18]  Z. Xing,et al.  Terrestrial matter effects on reactor antineutrino oscillations at JUNO or RENO-50: how small is small? , 2016, 1605.00900.

[19]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[20]  J. P. Rodrigues,et al.  Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data , 2014, 1410.7227.

[21]  U. Katz The ORCA Option for KM3NeT , 2014, 1402.1022.

[22]  The IceCube Collaboration Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU) , 2014, 1401.2046.

[23]  Mattias Blennow,et al.  Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering , 2013, 1311.1822.

[24]  Jun Cao,et al.  Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.

[25]  A. M. Guler,et al.  J un 2 01 0 Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam , 2012 .

[26]  J. C. Mitchell,et al.  Improved search for Muon-neutrino to electron-neutrino oscillations in MINOS. , 2011, Physical review letters.

[27]  Irvine,et al.  The T2K Experiment , 2009, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[28]  Hiroshi Nunokawa,et al.  CP violation and neutrino oscillations , 2007, 0710.0554.

[29]  The Lofar Pulsar Working Group,et al.  Physics at a future Neutrino Factory and super-beam facility , 2007, 0710.4947.

[30]  S. Parke,et al.  Determination of the Neutrino Mass Hierarchy via the Phase of the Disappearance Oscillation Probability with a Monochromatic \bar{\nu}_e Source , 2007, hep-ph/0701151.

[31]  S. Parke,et al.  Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments , 2006, hep-ph/0607284.

[32]  S. Parke,et al.  Another possible way to determine the neutrino mass hierarchy , 2005, hep-ph/0503283.

[33]  S. King Neutrino mass models , 2002, hep-ph/0310204.

[34]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[35]  S. Kim,et al.  Indications of neutrino oscillation in a 250 km long-baseline experiment. , 2002, Physical review letters.

[36]  KamLAND-Zen Collaboration First results from KamLAND: evidence for reactor antineutrino disappearance. , 2002, Physical review letters.

[37]  K. Kimura,et al.  Exact formulas and simple CP dependence of neutrino oscillation probabilities in matter with constant density , 2002, hep-ph/0205295.

[38]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[39]  S. Kim,et al.  Solar 8B and hep neutrino measurements from 1258 days of Super-Kamiokande data. , 2001, Physical review letters.

[40]  A. Dighe,et al.  Identifying the neutrino mass spectrum from a supernova neutrino burst , 1999, hep-ph/9907423.

[41]  A. Dighe,et al.  Identifying the neutrino mass spectrum from the neutrino burst from a supernova , 1999 .

[42]  S. Collaboration Measurement of the solar neutrino capture rate with gallium metal , 1999, astro-ph/9907113.

[43]  The Super-Kamiokande Collaboration,et al.  Evidence for oscillation of atmospheric neutrinos , 1998, hep-ex/9807003.

[44]  C. K. Lee,et al.  Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector , 1998 .

[45]  L. Gosset,et al.  GALLEX solar neutrino observations: Results for GALLEX IV , 1996 .

[46]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[47]  Lisi,et al.  Tests of three-flavor mixing in long-baseline neutrino oscillation experiments. , 1996, Physical review. D, Particles and fields.

[48]  T. Kuo,et al.  Neutrino Oscillations in Matter , 1989 .

[49]  S. Mikheyev,et al.  Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos , 1986 .

[50]  B. Pontecorvo Neutrino Experiments and the Problem of Conservation of Leptonic Charge , 1967 .

[51]  Z. Maki,et al.  Remarks on the unified model of elementary particles , 1962 .