FSRD: fungal stress response database

Adaptation to different types of environmental stress is a common part of life for today’s fungi. A deeper understanding of the organization, regulation and evolution of fungal stress response systems may lead to the development of novel antifungal drugs and technologies or the engineering of industrial strains with elevated stress tolerance. Here we present the Fungal Stress Response Database (http://internal.med.unideb.hu/fsrd) aimed to stimulate further research on stress biology of fungi. The database incorporates 1985 fungal stress response proteins with verified physiological function(s) and their orthologs identified and annotated in 28 species including human and plant pathogens, as well as important industrial fungi. The database will be extended continuously to cover other fully sequenced fungal species. Our database, as a starting point for future stress research, facilitates the analysis of literature data on stress and the identification of ortholog groups of stress response proteins in newly sequenced fungal genomes. Database URL: http://internal.med.unideb.hu/fsrd

[1]  K. Verstrepen,et al.  Glucose and sucrose: hazardous fast-food for industrial yeast? , 2004, Trends in biotechnology.

[2]  G. Lidén,et al.  Stress‐related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae , 2011, Biotechnology journal.

[3]  D. Hewitt,et al.  Reactive oxygen species and development in microbial eukaryotes. , 2005, Trends in microbiology.

[4]  M. Gunzer,et al.  Shaping the fungal adaptome--stress responses of Aspergillus fumigatus. , 2011, International journal of medical microbiology : IJMM.

[5]  F. Klis,et al.  Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood , 2005, Molecular microbiology.

[6]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[7]  P. Franks,et al.  Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. , 2010, Nature communications.

[8]  P. Tudzynski,et al.  Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease. , 2011, Annual review of phytopathology.

[9]  J. Lodge,et al.  Cryptococcus neoformans, a fungus under stress. , 2007, Current opinion in microbiology.

[10]  Jane E. Mabey Gilsenan,et al.  CADRE: the Central Aspergillus Data REpository 2012 , 2011, Nucleic Acids Res..

[11]  J. Latgé,et al.  Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus , 2006, Nature Reviews Microbiology.

[12]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[13]  Erik L. L. Sonnhammer,et al.  InParanoid 6: eukaryotic ortholog clusters with inparalogs , 2007, Nucleic Acids Res..

[14]  C. Mathé,et al.  Molecular and biochemical aspects of plant terrestrialization , 2012 .

[15]  S. Dong,et al.  The bZIP Transcription Factor MoAP1 Mediates the Oxidative Stress Response and Is Critical for Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae , 2011, PLoS pathogens.

[16]  Erik L. L. Sonnhammer,et al.  InParanoid 7: new algorithms and tools for eukaryotic orthology analysis , 2009, Nucleic Acids Res..

[17]  A. Keating,et al.  bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. , 2013, Microbiology.

[18]  E. Lumini,et al.  Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. , 2007, American journal of botany.

[19]  Audrey P Gasch,et al.  Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. , 2008, Molecular biology of the cell.

[20]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[21]  P. Muchowski,et al.  Making yeast tremble , 2007, NeuroMolecular Medicine.

[22]  A. Gasch,et al.  Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae , 2012, Genetics.

[23]  Erik L. L. Sonnhammer,et al.  Inparanoid: a comprehensive database of eukaryotic orthologs , 2004, Nucleic Acids Res..

[24]  Jürg Bähler,et al.  PomBase: a comprehensive online resource for fission yeast , 2011, Nucleic Acids Res..

[25]  S. Hedges,et al.  Molecular Evidence for the Early Colonization of Land by Fungi and Plants , 2001, Science.

[26]  Bernard Henrissat,et al.  The 2008 update of the Aspergillus nidulans genome annotation: a community effort. , 2009, Fungal genetics and biology : FG & B.

[27]  Norman W. Paton,et al.  CADRE: the Central Aspergillus Data REpository. , 2004 .

[28]  Norman W. Paton,et al.  CADRE: the Central Aspergillus Data REpository , 2004, Nucleic Acids Res..

[29]  Marcus C. Chibucos,et al.  The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources , 2011, Nucleic Acids Res..

[30]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[31]  M. Sinha,et al.  Comparative Transcriptome Analysis of the Necrotrophic Fungus Ascochyta rabiei during Oxidative Stress: Insight for Fungal Survival in the Host Plant , 2012, PloS one.

[32]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[33]  M. Miskei,et al.  Annotation of stress-response proteins in the aspergilli. , 2009, Fungal genetics and biology : FG & B.

[34]  C. Rodrigues-Pousada,et al.  Oxidative Stress in Alzheimer's and Parkinson's Diseases: Insights from the Yeast Saccharomyces cerevisiae , 2012, Oxidative medicine and cellular longevity.

[35]  C. Fanelli,et al.  Aoyap1 regulates OTA synthesis by controlling cell redox balance in Aspergillus ochraceus , 2012, Applied Microbiology and Biotechnology.

[36]  Christopher M. Crew,et al.  High-throughput production of gene replacement mutants in Neurospora crassa. , 2011, Methods in molecular biology.

[37]  L. Harvey,et al.  Oxidative stress in fungal fermentation processes: the roles of alternative respiration , 2011, Biotechnology Letters.

[38]  C. Rodrigues-Pousada,et al.  Iron and Neurodegeneration: From Cellular Homeostasis to Disease , 2012, Oxidative medicine and cellular longevity.

[39]  Corey Nislow,et al.  Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast , 2011, PLoS genetics.

[40]  Brett Williams,et al.  The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production , 2012 .

[41]  E. Hardiman,et al.  Pathways for degradation of lignin in bacteria and fungi. , 2011, Natural product reports.

[42]  Jonathan D. G. Jones,et al.  Reactive oxygen species produced by NADPH oxidase regulate plant cell growth , 2003, Nature.

[43]  S. Pöggeler,et al.  Evolution of Fungi and Fungal-Like Organisms , 2011 .

[44]  Rodrigo Lopez,et al.  A new bioinformatics analysis tools framework at EMBL–EBI , 2010, Nucleic Acids Res..

[45]  C. Rappleye,et al.  Extracellular Superoxide Dismutase Protects Histoplasma Yeast Cells from Host-Derived Oxidative Stress , 2012, PLoS pathogens.

[46]  P. Tudzynski,et al.  Reactive oxygen species generation in fungal development and pathogenesis. , 2012, Current opinion in microbiology.

[47]  W. Hansberg,et al.  NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in Neurospora crassa , 2008, Eukaryotic Cell.

[48]  Marek S. Skrzypek,et al.  The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata , 2011, Nucleic Acids Res..