On the connection between the intergalactic medium and galaxies: the H i–galaxy cross-correlation at z ≲ 1

We present a new optical spectroscopic survey of 1777 `star-forming' ('SF') and 366 `non-star-forming' ('non-SF') galaxies at redshifts z similar to 0-1 (2143 in total), 22 AGN and 423 stars, observed by instruments such as the Deep Imaging Multi-Object Spectrograph, the Visible Multi-Object Spectrograph and the Gemini Multi-Object Spectrograph, in three fields containing five quasi-stellar objects (QSOs) with Hubble Space Telescope (HST) ultraviolet spectroscopy. We also present a new spectroscopic survey of 173 `strong' (10(14) N-HI less than or similar to 10(17) cm(-2)) and 496 `weak' (10(13) less than or similar to N-HI 10(14) cm(-2)) intervening H i (Ly alpha) absorption-line systems at z less than or similar to 1 (669 in total), observed in the spectra of eight QSOs at z similar to 1 by the Cosmic Origins Spectrograph and the Faint Object Spectrograph on the HST. Combining these new data with previously published galaxy catalogues such as the Very Large Telescope Visible Multi-Object Spectrograph Deep Survey and the Gemini Deep Deep Survey, we have gathered a sample of 654 H i absorption systems and 17 509 galaxies at transverse scales less than or similar to 50 Mpc, suitable for a two-point correlation function analysis. We present observational results on the H i-galaxy (xi(ag)) and galaxy-galaxy (xi(gg)) correlations at transverse scales r(perpendicular to) less than or similar to 10 Mpc, and the H i-H i autocorrelation (xi(aa)) at transverse scales r(perpendicular to) less than or similar to 2 Mpc. The two-point correlation functions are measured both along and transverse to the line of sight, xi(r(perpendicular to), r(\textlessparallel to\textgreater)). We also infer the shape of their corresponding `real-space' correlation functions, xi(r), from the projected along the line-of-sight correlations, assuming power laws of the form xi(r) = (r/r(0))(-gamma). Comparing the results from xi(ag), xi(gg) and xi(aa), we constrain the H i-galaxy statistical connection, as a function of both H i column density and galaxy star formation activity. Our results are consistent with the following conclusions: (i) the bulk of H i systems on similar to Mpc scales have little velocity dispersion (less than or similar to 120 km s(-1)) with respect to the bulk of galaxies (i.e. no strong galaxy outflow/inflow signal is detected); (ii) the vast majority (similar to 100 per cent) of `strong' H i systems and `SF' galaxies are distributed in the same locations, together with 75 +/- 15 per cent of `non-SF' galaxies, all of which typically reside in dark matter haloes of similar masses; (iii) 25 +/- 15 per cent of `non-SF' galaxies reside in galaxy clusters and are not correlated with `strong' H i systems at scales less than or similar to 2 Mpc; and (iv) \textgreater 50 per cent of `weak' H i systems reside within galaxy voids (hence not correlated with galaxies), and are confined in dark matter haloes of masses smaller than those hosting `strong' systems and/or galaxies. We speculate that H i systems within galaxy voids might still be evolving in the linear regime even at scales less than or similar to 2 Mpc.

[1]  C. Steidel,et al.  A measurement of galaxy halo mass from the surrounding H i Lyα absorption , 2013, 1306.1563.

[2]  Jessica L. Rosenberg,et al.  HST/COS SPECTRA OF THREE QSOs THAT PROBE THE CIRCUMGALACTIC MEDIUM OF A SINGLE SPIRAL GALAXY: EVIDENCE FOR GAS RECYCLING AND OUTFLOW , 2013, 1301.4242.

[3]  B. Savage,et al.  Characterizing the Circumgalactic Medium of Nearby Galaxies with HST/COS and HST/STIS Absorption-line Spectroscopy. II. Methods and Models , 2012, 1212.5658.

[4]  G. Bryan,et al.  Constraints on hydrodynamical subgrid models from quasar absorption line studies of the simulated circumgalactic medium , 2012, 1212.2965.

[5]  J. Prochaska,et al.  THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM , 2012, 1212.0558.

[6]  U. Durham,et al.  How supernova explosions power galactic winds , 2012, 1211.1395.

[7]  D. Weinberg,et al.  Hydrogen and Metal Line Absorption Around Low-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2012, 1206.1859.

[8]  J. Xavier Prochaska,et al.  NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES , 2012, 1209.5442.

[9]  Simon L. Morris,et al.  Large-scale structure in absorption: gas within and around galaxy voids , 2012, 1205.2697.

[10]  James C. Green,et al.  On the Significance of Absorption Features in HST/COS Data , 2012, 1206.2951.

[11]  G. Bryan,et al.  WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Lyα ABSORBERS , 2012, 1204.6316.

[12]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[13]  H. Zhan,et al.  THE CORRELATION FUNCTION OF GALAXY CLUSTERS AND DETECTION OF BARYON ACOUSTIC OSCILLATIONS , 2012, 1202.0640.

[14]  J. Schaye,et al.  Absorption signatures of warm-hot gas at low redshift: Broad HI Lyman-Alpha Absorbers , 2012, 1201.5641.

[15]  Britton D. Smith,et al.  THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING , 2011, 1112.2706.

[16]  D. Weinberg,et al.  The intergalactic medium over the last 10 billion years - II. Metal-line absorption and physical conditions: Metal-line absorption and physical conditions , 2011, 1106.1444.

[17]  B. Gibson,et al.  MAGICC haloes: confronting simulations with observations of the circumgalactic medium at z = 0 , 2011, 1112.1698.

[18]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[19]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[20]  C. Steidel,et al.  NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z ≈ 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY , 2011, 1109.4944.

[21]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[22]  Carnegie Observatories,et al.  PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O vi ABSORPTION AT z < 0.2 , 2011, 1103.1891.

[23]  B. Weiner,et al.  PROBING THE IGM/GALAXY CONNECTION. IV. THE LCO/WFCCD GALAXY SURVEY OF 20 FIELDS SURROUNDING UV-BRIGHT QUASARS , 2011, 1103.1890.

[24]  J. Schaye,et al.  The drop in the cosmic star formation rate below redshift 2 is caused by a change in the mode of gas accretion and by AGN feedback , 2011, 1102.3912.

[25]  C. Steidel,et al.  Calibrating galaxy redshifts using absorption by the surrounding intergalactic medium , 2010, 1011.1282.

[26]  B. Savage,et al.  O vi ABSORBERS TRACING HOT GAS ASSOCIATED WITH A PAIR OF GALAXIES AT z = 0.167 , 2010, 1007.0772.

[27]  P. Petitjean,et al.  The VLT LBG Redshift Survey* – II. Interactions between galaxies and the IGM at z∼ 3 , 2010, 1006.4385.

[28]  Juna A. Kollmeier,et al.  The intergalactic medium over the last 10 billion years – I. Lyα absorption and physical conditions , 2010, 1005.2421.

[29]  G. Williger,et al.  The low-redshift Lyα forest towards 3C 273★ , 2010, 1002.3401.

[30]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[31]  N. Crighton,et al.  The association between gas and galaxies – III. The cross-correlation of galaxies and Lyα absorbers at z∼ 1 , 2009, 0911.3400.

[32]  N. Crighton,et al.  Galaxies at a redshift of ∼0.5 around three closely spaced quasar sightlines , 2009, 0911.0368.

[33]  Hsiao-Wen Chen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 PROBING THE IGM-GALAXY CONNECTION AT Z < 0.5 I: A GALAXY SURVEY IN QSO FIELDS AND A GALAXY-ABSORBER CROSS-CORRELATION STUDY 1,2 , 2022 .

[34]  B. Savage,et al.  THE RELATIONSHIP BETWEEN INTERGALACTIC H i/O vi AND NEARBY (z < 0.017) GALAXIES , 2009, 0903.2259.

[35]  P. Lira,et al.  Galaxy clusters in the line of sight to background quasars – II. Environmental effects on the sizes of baryonic halo sizes , 2009, 0902.1987.

[36]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[37]  M. Norman,et al.  The Lyα forest at redshifts 0.1-1.6: good agreement between a large hydrodynamic simulation and HST spectra , 2008, 0802.3730.

[38]  J. Frieman,et al.  THE CORRELATION FUNCTION OF OPTICALLY SELECTED GALAXY CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY , 2008, 0801.3485.

[39]  C. Lagos,et al.  Effects of AGN feedback on ΛCDM galaxies , 2008, 0805.1930.

[40]  E. Branchini,et al.  The relation between Lyman α absorbers and gas-rich galaxies in the local universe , 2008, 0805.0600.

[41]  P. Lira,et al.  Galaxy Clusters in the Line of Sight to Background Quasars. I. Survey Design and Incidence of Mg II Absorbers at Cluster Redshifts , 2008, 0803.0598.

[42]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[43]  R. Davé,et al.  The association between gas and galaxies – II. The two-point correlation function , 2006, astro-ph/0611807.

[44]  C. Foltz,et al.  Lyα Absorption in the Quasar Triplet Q0107−025A, Q0107−025B, and Q0107−0232: Data Calibration and Line Selection , 2006, astro-ph/0610350.

[45]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[46]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[47]  S. Morris,et al.  The association between gas and galaxies – I. CFHT spectroscopy and pair analysis , 2006, astro-ph/0601200.

[48]  E. Ryan-Weber Cross-correlation of Lyman α absorbers with gas-rich galaxies , 2006, astro-ph/0601055.

[49]  G. Williger,et al.  The Low-Redshift Lyα Forest toward PKS 0405–123 , 2005, astro-ph/0505586.

[50]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[51]  B. Garilli,et al.  The Very Large Telescope Visible Multi‐Object Spectrograph Mask Preparation Software , 2005 .

[52]  G. Williger,et al.  Probing the Intergalactic Medium-Galaxy Connection toward PKS 0405–123. II. A Cross-Correlation Study of Lyα Absorbers and Galaxies at z < 0.5 , 2005, astro-ph/0507621.

[53]  F. Stootman,et al.  The HIPASS catalogue - III. Optical counterparts and isolated dark galaxies , 2005, astro-ph/0505591.

[54]  C. Steidel,et al.  The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2 ≲ z ≲ 3 , 2005, astro-ph/0505122.

[55]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[56]  A. Mazure,et al.  The VVDS Data‐Reduction Pipeline: Introducing VIPGI, the VIMOS Interactive Pipeline and Graphical Interface , 2004, astro-ph/0409248.

[57]  Patrick J. McCarthy,et al.  The Gemini Deep Deep Survey: I. Introduction to the Survey, Catalogs and Composite Spectra , 2004, astro-ph/0402436.

[58]  D. Madgwick,et al.  The DEEP2 Galaxy Redshift Survey: Clustering of Galaxies in Early Data , 2003, astro-ph/0305586.

[59]  C. Manning Modeling the Void H I Column Density Spectrum with Subgalactic Halos , 2003, astro-ph/0303558.

[60]  Oliver LeFevre,et al.  Commissioning and performances of the VLT-VIMOS , 2003, SPIE Astronomical Telescopes + Instrumentation.

[61]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[62]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[63]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[64]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[65]  J. Blades,et al.  Lyα Absorption around Nearby Galaxies , 2002, astro-ph/0208003.

[66]  C. Manning The Search for Intergalactic Hydrogen Clouds in Voids , 2002, astro-ph/0203195.

[67]  S. Penton,et al.  The Local Lyα Forest. III. Relationship between Lyα Absorbers and Galaxies, Voids, and Superclusters , 2001, astro-ph/0109277.

[68]  J. Schaye Model-independent Insights into the Nature of the Lyα Forest and the Distribution of Matter in the Universe , 2001, astro-ph/0104272.

[69]  Frazer R. Pearce,et al.  Clustering of galaxy clusters in CDM universes , 2000 .

[70]  S. Penton,et al.  The Local Lyα Forest. II. Distribution of H I Absorbers,Doppler Widths, and Baryon Content , 1999, astro-ph/9911128.

[71]  James C. Green,et al.  THE COSMIC ORIGINS SPECTROGRAPH , 1999, Astronomical Telescopes + Instrumentation.

[72]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[73]  J. Schaye,et al.  Broadening of QSO Lyα forest absorbers , 1999, astro-ph/9908288.

[74]  Cambridge,et al.  Measuring the equation of state of the intergalactic medium , 1999, astro-ph/9906271.

[75]  C. Impey,et al.  A Study of Lyα Quasar Absorbers in the Nearby Universe , 1999, astro-ph/9905381.

[76]  A. Leonard,et al.  Dependences of QSO Lyα absorption line statistics on cosmological parameters , 1998, astro-ph/9812141.

[77]  R. Cen,et al.  Where Are the Baryons? , 1998, astro-ph/9806281.

[78]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[79]  B. Savage,et al.  The Relationship between Galaxies and Low-Redshift Weak Lyα Absorbers in the Directions of H1821+643 and PG 1116+215 , 1998, astro-ph/9806036.

[80]  N. Grogin,et al.  Lyα Absorption Systems and the Nearby Galaxy Distribution , 1998, astro-ph/9804326.

[81]  Sheets and Filaments as the Origin of the High-Velocity Tail of the Lyα Forest , 1997, astro-ph/9707334.

[82]  M. Fukugita,et al.  The Cosmic Baryon Budget , 1997, astro-ph/9712020.

[83]  L. Hui,et al.  The b Distribution and the Velocity Structure of Absorption Peaks in the Lyα Forest , 1997, astro-ph/9709100.

[84]  George N. Dodsworth,et al.  GMOS: the GEMINI Multiple Object Spectrographs , 1997, Other Conferences.

[85]  L. Hui,et al.  Equation of state of the photoionized intergalactic medium , 1996, astro-ph/9612232.

[86]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[87]  D. Osterbrock,et al.  NIGHT-SKY HIGH-RESOLUTION SPECTRAL ATLAS OF OH AND O2 EMISSION LINES FOR ECHELLE SPECTROGRAPH WAVELENGTH CALIBRATION , 1996 .

[88]  A. Fernández-Soto,et al.  The Gaseous Extent of Galaxies and the Origin of Lyα Absorption Systems. IV. Lyα Absorbers Arising in a Galaxy Group , 1999, astro-ph/9904232.

[89]  M. Donahue,et al.  The Local LY alpha Forest: Association of Clouds with Superclusters and Voids , 1995 .

[90]  C. Keyes Faint Object Spectrograph Instrument Handbook v. 6.0 , 1995 .

[91]  K. Lanzetta,et al.  The gaseous extent of galaxies and the origin of Lyman-alpha absorption systems: A survey of galaxies in the fields of Hubble Space Telescope spectroscopic target QSOs , 1995 .

[92]  S. Morris,et al.  The sources of Lyman α absorption at low redshifts: galaxies haloes and minihaloes , 1994 .

[93]  H. Mo Lyman α absorption at low redshifts and hot gas in galactic haloes , 1994, astro-ph/9406048.

[94]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[95]  M. Irwin,et al.  The Environment of Lyman- alpha Absorbers in the Sight Line toward 3C 273 , 1993, astro-ph/9307005.

[96]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[97]  J. Peacock,et al.  The cross-correlation of IRAS galaxies with Abell clusters and radio galaxies , 1993 .

[98]  Nicholas B. Suntzeff,et al.  SOUTHERN SPECTROPHOTOMETRIC STANDARDS. I. , 1992 .

[99]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[100]  R. Gilliland,et al.  First results from the Goddard High-Resolution Spectrograph - The Galactic halo and the Ly-alpha forest at low redshift in 3C 273 , 1991 .

[101]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[102]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[103]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[104]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[105]  P. Hewett,et al.  The estimation of galaxy angular correlation functions , 1982 .

[106]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[107]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[108]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .