Kinetic studies of ICF implosions

Here, kinetic effects on inertial confinement fusion have been investigated. In particular, inter-ion-species diffusion and suprathermal ion distribution have been analyzed. The former drives separation of the fuel constituents in the hot reacting core and governs mix at the shell/fuel interface. The latter underlie measurements obtained with nuclear diagnostics, including the fusion yield and inferred ion burn temperatures. Basic mechanisms behind and practical consequences from these effects are discussed.

[1]  C. McDevitt,et al.  Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions. , 2015, Physical review letters.

[2]  Brian James Albright,et al.  Revised Knudsen-layer reduction of fusion reactivity , 2013 .

[3]  A. Petschek,et al.  Influence of high-energy ion loss on DT reaction rate in laser fusion pellets , 1979 .

[4]  Steven W. Haan,et al.  Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .

[5]  Robert B Webster,et al.  Knudsen layer reduction of fusion reactivity. , 2012, Physical review letters.

[6]  Peter A. Amendt,et al.  The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion databasea) , 2011 .

[7]  T. C. Sangster,et al.  Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions , 2015 .

[8]  R. Petrasso,et al.  Ion-kinetic simulations of D-3He gas-filled inertial confinement fusion target implosions with moderate to large Knudsen number , 2016 .

[9]  S. Wilks,et al.  Species separation in inertial confinement fusion fuels , 2013 .

[10]  O. Landen,et al.  Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures. , 2010, Physical review letters.

[11]  J. Huba NRL: Plasma Formulary , 2004 .

[12]  Thomas J. Murphy,et al.  The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra , 2014 .

[13]  N. Meezan,et al.  Indications of flow near maximum compression in layered DT implosions at the National Ignition Facility , 2016 .

[14]  Xianzhu Tang,et al.  Thermo-diffusion in inertially confined plasmas , 2013, 1310.8227.

[15]  Xianzhu Tang,et al.  Electro-diffusion in a plasma with two ion species , 2012, 1204.1312.

[16]  O. Larroche,et al.  Ion Fokker-Planck simulation of D-3He gas target implosions , 2012 .

[17]  D. Henderson Burn Characteristics of Marginal Deuterium-Tritium Microspheres , 1974 .

[18]  P B Radha,et al.  Measuring implosion dynamics through rhoR evolution in inertial-confinement fusion experiments. , 2003, Physical review letters.

[19]  N. Fisch,et al.  Fusion utility in the Knudsen layer , 2014 .

[20]  C. McDevitt,et al.  Reduced Fokker-Planck models for fast particle distribution across a transition layer of disparate plasma temperatures , 2014 .

[21]  James Cooley,et al.  The effects of pre-mix on burn in ICF capsules , 2008 .

[22]  S. Wilks,et al.  One-dimensional particle simulations of Knudsen-layer effects on D-T fusion , 2014 .

[23]  Arthur Nobile,et al.  Anomalous yield reduction in direct-drive deuterium/tritium implosions due to H3e additiona) , 2009 .

[24]  B. Yaakobi,et al.  Regular ArticleDiagnosis of High-Temperature Implosions Using Low- and High-Opacity Krypton Lines , 1996 .

[25]  J. Daligault,et al.  Effective Potential Theory for Transport Coefficients across Coupling Regimes , 2013 .

[26]  Frederick J. Wysocki,et al.  The effects of laser absorption on direct-drive capsule experiments at OMEGA , 2012 .

[27]  J. R. Rygg,et al.  Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions. , 2012, Physical review letters.

[28]  V N Goncharov,et al.  Exploration of the transition from the hydrodynamiclike to the strongly kinetic regime in shock-driven implosions. , 2014, Physical review letters.

[29]  P. Schmit,et al.  Tail-ion transport and Knudsen layer formation in the presence of magnetic fields. , 2013 .

[30]  J. P. Chittenden,et al.  The production spectrum in fusion plasmas , 2011 .

[31]  Steven James,et al.  Constraining fundamental plasma physics processes using doped capsule implosions , 2008 .

[32]  S. Wilks,et al.  Ion thermal decoupling and species separation in shock-driven implosions. , 2015, Physical review letters.

[33]  D. Saumon,et al.  Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics. , 2016, Physical review letters.

[34]  H. Brysk,et al.  Fusion neutron energies and spectra , 1973 .

[35]  Paul A. Jaanimagi,et al.  Characterization of direct-drive-implosion core conditions on OMEGA with time-resolved Ar K-shell spectroscopy , 2002 .