A Hierarchy of Models for Type-II Superconductors

A hierarchy of models for type-II superconductors is presented. Through appropriate asymptotic limits we pass from the mesoscopic Ginzburg--Landau model to the London model with isolated superconducting vortices as line singularities, to vortex-density models, and finally to macroscopic critical-state models.

[1]  C. M. Elliott,et al.  Viscosity Solutions of a Degenerate Parabolic-Elliptic System Arising in the Mean-Field Theory of Superconductivity , 1998 .

[2]  C. M. Elliott,et al.  Numerical analysis of a mean field model of superconducting vortices , 2001 .

[3]  W. L. Mclean Vortex Motion in Type II Superconductors , 1969 .

[4]  Jacob Rubinstein,et al.  Vortex dynamics in U(1) Ginzberg-Landau models , 1993 .

[5]  Qiang Du,et al.  Analysis and computation of a mean-field model for superconductivity , 1999, Numerische Mathematik.

[6]  S. Jonathan Chapman,et al.  The Motion of Superconducting Vortices in Thin Films of Varying Thickness , 1998, SIAM J. Appl. Math..

[7]  Malcolm McCulloch,et al.  Computer modelling of type II superconductors in applications , 1999 .

[8]  D. Aronson The porous medium equation , 1986 .

[9]  B. Stoth,et al.  The Stationary Mean Field Model of Superconductivity: Partial Regularity of the Free Boundary , 1999 .

[10]  Qiang Du,et al.  Vortices in superconductors: modelling and computer simulations , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[12]  Giles Richardson,et al.  Instability of a superconducting line vortex , 1997 .

[13]  A. Schmid,et al.  A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state , 1966 .

[14]  L. Prigozhin,et al.  Analysis of critical-state problems in type-II superconductivity , 1997, IEEE Transactions on Applied Superconductivity.

[15]  Enomoto,et al.  Effects of the surface boundary on the magnetization process in type-II superconductors. , 1993, Physical review. B, Condensed matter.

[16]  L. Gor’kov,et al.  EXTENSION OF THE EQUATIONS OF THE GINZBURG--LANDAU THEORY FOR NONSTATIONARY PROBLEMS TO THE CASE OF ALLOYS WITH PARAMAGNETIC IMPURITIES. , 1968 .

[17]  S. Jonathan Chapman,et al.  Superheating Field of Type II Superconductors , 1995, SIAM J. Appl. Math..

[18]  Sylvia Serfaty,et al.  Global minimizers for the Ginzburg–Landau functional below the first critical magnetic field , 2000 .

[19]  H. London,et al.  The electromagnetic equations of the supraconductor , 1935 .

[20]  Sam D. Howison,et al.  Macroscopic Models for Superconductivity , 1992, SIAM Rev..

[21]  Konstantin K. Likharev,et al.  Superconducting weak links , 1979 .

[22]  V. Styles,et al.  Analysis of a mean field model of superconducting vortices , 1999, European journal of applied mathematics.

[23]  William Gropp,et al.  Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .

[24]  Y. Y. Chen,et al.  Symmetric vortices for the Ginzberg-Landau equations of superconductivity and the nonlinear desingularization phenomenon☆ , 1989 .

[25]  G. M. Éliashberg,et al.  Generalization of the Ginzburg-Landau Equations for Non-Stationary Problems in the Case of Alloys with Paramagnetic Impurities - JETP 27, 328 (1968) , 1968 .

[26]  B. Stoth,et al.  Ill-posedness of the mean-field model of superconducting vortices and a possible regularisation , 2000, European Journal of Applied Mathematics.

[27]  S. Jonathan Chapman,et al.  Motion of Vortices in Type II Superconductors , 1995, SIAM J. Appl. Math..

[28]  E. Brandt Flux diffusion in high-Tc superconductors , 1990 .

[29]  Peterson,et al.  Solving the Ginzburg-Landau equations by finite-element methods. , 1992, Physical review. B, Condensed matter.

[30]  J. Clem Spiral-vortex expansion instability in type-II superconductors , 1977 .

[31]  Qiang Du,et al.  Modeling and Analysis of a Periodic Ginzburg-Landau Model for Type-II Superconductors , 1993, SIAM J. Appl. Math..

[32]  Leonid Prigozhin,et al.  On the Bean critical-state model in superconductivity , 1996, European Journal of Applied Mathematics.

[33]  Alexei Abrikosov,et al.  Magnetic properties of superconductors of the second group , 1956 .

[34]  C. P. Bean,et al.  Magnetization of High-Field Superconductors , 1964 .

[35]  Jacob Rubinstein,et al.  A mean-field model of superconducting vortices , 1996, European Journal of Applied Mathematics.

[36]  C. F. Hempstead,et al.  CRITICAL PERSISTENT CURRENTS IN HARD SUPERCONDUCTORS , 1962 .

[37]  G. J. Barnes,et al.  Finite difference modelling of bulk high temperature superconducting cylindrical hysteresis machines , 2000 .

[38]  S. Jonathan Chapman,et al.  Convergence of Meissner Minimizers of the Ginzburg-Landau Energy of Superconductivity as κ->+∞ , 2000, SIAM J. Math. Anal..

[39]  Qiang Du,et al.  A Ginzburg–Landau type model of superconducting/normal junctions including Josephson junctions , 1995, European Journal of Applied Mathematics.

[40]  Sylvia Serfaty,et al.  A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .

[41]  C. P. Bean Magnetization of hard superconductors , 1962 .

[42]  Philip W. Anderson,et al.  Theory of Flux Creep in Hard Superconductors , 1962 .

[43]  Dorsey Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach. , 1992, Physical review. B, Condensed matter.

[44]  Sylvia Serfaty,et al.  ON THE ENERGY OF TYPE-II SUPERCONDUCTORS IN THE MIXED PHASE , 2000 .

[45]  Zhiming Chen,et al.  Numerical Simulations of Dynamical Ginzburg-Landau Vortices in Superconductivity , 1994 .

[46]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[47]  John C. Neu,et al.  Vortices in complex scalar fields , 1990 .

[48]  Leonid Prigozhin,et al.  The Bean Model in Superconductivity , 1996 .

[49]  S. Jonathan A MEAN-FIELD MODEL OF SUPERCONDUCTING VORTICES IN THREE DIMENSIONS* , 1995 .

[50]  C. M. Elliott,et al.  Flux pinning and boundary nucleation of vorticity in a mean field model of superconducting vortices , 2000 .

[51]  J. Schrieffer Theory of superconductivity , 1958 .

[52]  C. F. Hempstead,et al.  Magnetization and Critical Supercurrents , 1963 .

[53]  Lev P. Gor'kov,et al.  Microscopic derivation of the Ginzburg--Landau equations in the theory of superconductivity , 1959 .

[54]  Lev P. Gor'kov,et al.  VISCOUS VORTEX FLOW IN SUPERCONDUCTORS WITH PARAMAGNETIC IMPURITIES. , 1971 .

[55]  Charles M. Elliott,et al.  Shooting method for vortex solutions of a complex-valued Ginzburg–Landau equation , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[56]  Nelson,et al.  Hydrodynamics of flux liquids. , 1990, Physical review. B, Condensed matter.

[57]  Giles Richardson,et al.  Vortex pinning by inhomogeneities in type-II superconductors , 1997 .