Inverted Colloidal Quantum Dot Solar Cells

An inverted architecture of quantum dot solar cells is demonstrated by introducing a novel ZnO method on top of the PbS CQD film. Improvements in device characteristics stem from constructive optical interference from the ZnO layer that enhances absorption in the PbS CQD layer. Outstanding diode characteristics arising from a superior PbS/ZnO junction provide a further electronic advantage.

[1]  Oleksandr Voznyy,et al.  All‐Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution‐Phase Halide Passivation , 2012, Advanced materials.

[2]  Andrés J. García,et al.  Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics , 2011 .

[3]  Thuc‐Quyen Nguyen,et al.  Electronic Properties at Gold/Conjugated‐Polyelectrolyte Interfaces , 2009 .

[4]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[5]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[6]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[7]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[8]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[9]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[10]  Gregory D. Scholes,et al.  Colloidal PbS Nanocrystals with Size‐Tunable Near‐Infrared Emission: Observation of Post‐Synthesis Self‐Narrowing of the Particle Size Distribution , 2003 .

[11]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[12]  Tobias Hanrath,et al.  Solution‐Processed Nanocrystal Quantum Dot Tandem Solar Cells , 2011, Advanced materials.

[13]  A. Nozik Quantum dot solar cells , 2002 .

[14]  O. Voznyy,et al.  N‐Type Colloidal‐Quantum‐Dot Solids for Photovoltaics , 2012, Advanced materials.

[15]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[16]  Samson A Jenekhe,et al.  Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. , 2010, Nano letters.

[17]  Ratan Debnath,et al.  Depleted-heterojunction colloidal quantum dot solar cells. , 2010, ACS nano.

[18]  Aram Amassian,et al.  Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. , 2011, Nature materials.

[19]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[20]  Kwanghee Lee,et al.  Optical spectroscopic characterization of plasma-polymerized thin films , 2003 .

[21]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[22]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[23]  G. Konstantatos,et al.  Near IR‐Sensitive, Non‐toxic, Polymer/Nanocrystal Solar Cells Employing Bi2S3 as the Electron Acceptor , 2011 .

[24]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .