The Gradient Flow for Control of Closed Quantum Systems

The gradient flow is commonly used to numerically solve the problem of maximizing quantum observables for finite dimensional closed quantum systems. In this note, we analyze the asymptotic behavior of the gradient flow. We show that, under a regularity assumption on the controls, the flow almost always converges to a solution of the maximization problem.

[1]  M. Chyba,et al.  Singular Trajectories and Their Role in Control Theory , 2003, IEEE Transactions on Automatic Control.

[2]  Herschel Rabitz,et al.  Exploring quantum control landscapes: Topology, features, and optimization scaling , 2011 .

[3]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[4]  Mazyar Mirrahimi,et al.  Lyapunov control of bilinear Schrödinger equations , 2005, Autom..

[5]  Ugo Boscain,et al.  Resonance of minimizers for n-level quantum systems with an arbitrary cost , 2003 .

[6]  Johannes J. Duistermaat,et al.  Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups , 1983 .

[7]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[8]  N. Khaneja,et al.  Optimal control-based efficient synthesis of building blocks of quantum algorithms: A perspective from network complexity towards time complexity , 2005 .

[9]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[10]  Augustin Banyaga,et al.  A proof of the Morse-Bott Lemma , 2004 .

[11]  S. Lang Fundamentals of differential geometry , 1998 .

[12]  Xiaoting Wang,et al.  Analysis of Lyapunov Method for Control of Quantum States , 2010, IEEE Transactions on Automatic Control.

[13]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[14]  U. Helmke,et al.  Gradient Flows for Optimization in Quantum Information and Quantum Dynamics:. Foundations and Applications , 2008, 0802.4195.

[15]  Herschel Rabitz,et al.  Search complexity and resource scaling for the quantum optimal control of unitary transformations , 2010, 1006.1829.

[16]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[17]  J. Coron Control and Nonlinearity , 2007 .

[18]  Y Zhang,et al.  Singular extremals for the time-optimal control of dissipative spin 1/2 particles. , 2010, Physical review letters.

[19]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[20]  Herschel Rabitz,et al.  Quantum control landscapes , 2007, 0710.0684.

[21]  A. Rothman,et al.  Exploring the level sets of quantum control landscapes (9 pages) , 2006 .

[22]  Sophie Shermer Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2011 .

[23]  A. I. Solomon,et al.  Complete controllability of finite-level quantum systems , 2001 .

[24]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[25]  Herschel Rabitz,et al.  Quantum control design via adaptive tracking , 2003 .

[26]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[27]  Mazyar Mirrahimi,et al.  Reference trajectory tracking for locally designed coherent quantum controls. , 2005, The journal of physical chemistry. A.

[28]  L. Faybusovich Dynamical systems that solve linear programming problems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[29]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[30]  Jr-Shin Li,et al.  Optimal pulse design in quantum control: A unified computational method , 2011, Proceedings of the National Academy of Sciences.

[31]  Mazyar Mirrahimi,et al.  Implicit Lyapunov control of finite dimensional Schrödinger equations , 2007, Syst. Control. Lett..

[32]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[33]  I. Maximov,et al.  Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms. , 2008, The Journal of chemical physics.